BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 9188448)

  • 1. Chaperone properties of the bacterial periplasmic substrate-binding proteins.
    Richarme G; Caldas TD
    J Biol Chem; 1997 Jun; 272(25):15607-12. PubMed ID: 9188448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chaperone properties of Escherichia coli thioredoxin and thioredoxin reductase.
    Kern R; Malki A; Holmgren A; Richarme G
    Biochem J; 2003 May; 371(Pt 3):965-72. PubMed ID: 12549977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chaperone properties of bacterial elongation factor EF-Tu.
    Caldas TD; El Yaagoubi A; Richarme G
    J Biol Chem; 1998 May; 273(19):11478-82. PubMed ID: 9565560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the Escherichia coli YedU protein as a molecular chaperone.
    Malki A; Kern R; Abdallah J; Richarme G
    Biochem Biophys Res Commun; 2003 Feb; 301(2):430-6. PubMed ID: 12565879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chaperone properties of bacterial elongation factor EF-G and initiation factor IF2.
    Caldas T; Laalami S; Richarme G
    J Biol Chem; 2000 Jan; 275(2):855-60. PubMed ID: 10625618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chaperone function of FkpA, a heat shock prolyl isomerase, in the periplasm of Escherichia coli.
    AriƩ JP; Sassoon N; Betton JM
    Mol Microbiol; 2001 Jan; 39(1):199-210. PubMed ID: 11123702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the structural role of an alpha beta loop of maltose-binding protein by mutagenesis: heat-shock induction by loop variants of the maltose-binding protein that form periplasmic inclusion bodies.
    Betton JM; Boscus D; Missiakas D; Raina S; Hofnung M
    J Mol Biol; 1996 Sep; 262(2):140-50. PubMed ID: 8831785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation versus aggregation of misfolded maltose-binding protein in the periplasm of Escherichia coli.
    Betton JM; Sassoon N; Hofnung M; Laurent M
    J Biol Chem; 1998 Apr; 273(15):8897-902. PubMed ID: 9535871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chaperone-like properties of lysophospholipids.
    Kern R; Joseleau-Petit D; Chattopadhyay MK; Richarme G
    Biochem Biophys Res Commun; 2001 Dec; 289(5):1268-74. PubMed ID: 11741332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping of the binding frame for the chaperone SecB within a natural ligand, galactose-binding protein.
    Khisty VJ; Munske GR; Randall LL
    J Biol Chem; 1995 Oct; 270(43):25920-7. PubMed ID: 7592780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Associative properties of the Escherichia coli galactose binding protein and maltose binding protein.
    Richarme G
    Biochem Biophys Res Commun; 1982 Mar; 105(2):476-81. PubMed ID: 7046749
    [No Abstract]   [Full Text] [Related]  

  • 12. Rates of ligand binding to periplasmic proteins involved in bacterial transport and chemotaxis.
    Miller DM; Olson JS; Pflugrath JW; Quiocho FA
    J Biol Chem; 1983 Nov; 258(22):13665-72. PubMed ID: 6358208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interferon-gamma is a target for binding and folding by both Escherichia coli chaperone model systems GroEL/GroES and DnaK/DnaJ/GrpE.
    Vandenbroeck K; Billiau A
    Biochimie; 1998; 80(8-9):729-37. PubMed ID: 9865495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic approach to the role of tryptophan residues in the activities and fluorescence of a bacterial periplasmic maltose-binding protein.
    Martineau P; Szmelcman S; Spurlino JC; Quiocho FA; Hofnung M
    J Mol Biol; 1990 Jul; 214(1):337-52. PubMed ID: 2196376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The inhibition of maltose transport by the unliganded form of the maltose-binding protein of Escherichia coli: experimental findings and mathematical treatment.
    Merino G; Boos W; Shuman HA; Bohl E
    J Theor Biol; 1995 Nov; 177(2):171-9. PubMed ID: 8558904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-controlled activity of DnaK-DnaJ-GrpE chaperones: protein-folding arrest and recovery during and after heat shock depends on the substrate protein and the GrpE concentration.
    Diamant S; Goloubinoff P
    Biochemistry; 1998 Jul; 37(27):9688-94. PubMed ID: 9657681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chaperone SecB from Escherichia coli mediates kinetic partitioning via a dynamic equilibrium with its ligands.
    Topping TB; Randall LL
    J Biol Chem; 1997 Aug; 272(31):19314-8. PubMed ID: 9235927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DnaJ potentiates the interaction between DnaK and alpha-helical peptides.
    de Crouy-Chanel A; Hodges RS; Kohiyama M; Richarme G
    Biochem Biophys Res Commun; 1997 Apr; 233(3):627-30. PubMed ID: 9168902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degp degrades a wide range of substrate proteins in Escherichia coli under stress conditions.
    Zhang S; Cheng Y; Ma J; Wang Y; Chang Z; Fu X
    Biochem J; 2019 Dec; 476(23):3549-3564. PubMed ID: 31738379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defect in export and synthesis of the periplasmic galactose receptor MglB in dnaK mutants of Escherichia coli, and decreased stability of the mglB mRNA.
    el Yaagoubi A; Kohiyama M; Richarme G
    Microbiology (Reading); 1996 Sep; 142 ( Pt 9)():2595-602. PubMed ID: 8828228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.