BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 9188468)

  • 1. Localization and suppression of a kinetic defect in cystic fibrosis transmembrane conductance regulator folding.
    Qu BH; Strickland EH; Thomas PJ
    J Biol Chem; 1997 Jun; 272(25):15739-44. PubMed ID: 9188468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alteration of the cystic fibrosis transmembrane conductance regulator folding pathway.
    Qu BH; Thomas PJ
    J Biol Chem; 1996 Mar; 271(13):7261-4. PubMed ID: 8631737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of the deltaF508 mutation in first nucleotide-binding domain of human cystic fibrosis transmembrane conductance regulator on domain folding and structure.
    Lewis HA; Zhao X; Wang C; Sauder JM; Rooney I; Noland BW; Lorimer D; Kearins MC; Conners K; Condon B; Maloney PC; Guggino WB; Hunt JF; Emtage S
    J Biol Chem; 2005 Jan; 280(2):1346-53. PubMed ID: 15528182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diminished self-chaperoning activity of the DeltaF508 mutant of CFTR results in protein misfolding.
    Serohijos AW; Hegedus T; Riordan JR; Dokholyan NV
    PLoS Comput Biol; 2008 Feb; 4(2):e1000008. PubMed ID: 18463704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cystic fibrosis-causing mutation deltaF508 affects multiple steps in cystic fibrosis transmembrane conductance regulator biogenesis.
    Thibodeau PH; Richardson JM; Wang W; Millen L; Watson J; Mendoza JL; Du K; Fischman S; Senderowitz H; Lukacs GL; Kirk K; Thomas PJ
    J Biol Chem; 2010 Nov; 285(46):35825-35. PubMed ID: 20667826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Restoration of NBD1 thermal stability is necessary and sufficient to correct ∆F508 CFTR folding and assembly.
    He L; Aleksandrov AA; An J; Cui L; Yang Z; Brouillette CG; Riordan JR
    J Mol Biol; 2015 Jan; 427(1):106-20. PubMed ID: 25083918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correction of both NBD1 energetics and domain interface is required to restore ΔF508 CFTR folding and function.
    Rabeh WM; Bossard F; Xu H; Okiyoneda T; Bagdany M; Mulvihill CM; Du K; di Bernardo S; Liu Y; Konermann L; Roldan A; Lukacs GL
    Cell; 2012 Jan; 148(1-2):150-63. PubMed ID: 22265408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The molecular chaperone Hsc70 assists the in vitro folding of the N-terminal nucleotide-binding domain of the cystic fibrosis transmembrane conductance regulator.
    Strickland E; Qu BH; Millen L; Thomas PJ
    J Biol Chem; 1997 Oct; 272(41):25421-4. PubMed ID: 9325249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermally unstable gating of the most common cystic fibrosis mutant channel (ΔF508): "rescue" by suppressor mutations in nucleotide binding domain 1 and by constitutive mutations in the cytosolic loops.
    Wang W; Okeyo GO; Tao B; Hong JS; Kirk KL
    J Biol Chem; 2011 Dec; 286(49):41937-41948. PubMed ID: 21965669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the interactions between nucleotide binding domains and membrane spanning domains in cystic fibrosis transmembrane regulator: A molecular dynamic study.
    Belmonte L; Moran O
    Biochimie; 2015 Apr; 111():19-29. PubMed ID: 25640670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational and temperature-sensitive stability defects of the delta F508 cystic fibrosis transmembrane conductance regulator in post-endoplasmic reticulum compartments.
    Sharma M; Benharouga M; Hu W; Lukacs GL
    J Biol Chem; 2001 Mar; 276(12):8942-50. PubMed ID: 11124952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correctors enhance maturation of DeltaF508 CFTR by promoting interactions between the two halves of the molecule.
    Loo TW; Bartlett MC; Clarke DM
    Biochemistry; 2009 Oct; 48(41):9882-90. PubMed ID: 19761259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human-mouse cystic fibrosis transmembrane conductance regulator (CFTR) chimeras identify regions that partially rescue CFTR-ΔF508 processing and alter its gating defect.
    Dong Q; Ostedgaard LS; Rogers C; Vermeer DW; Zhang Y; Welsh MJ
    Proc Natl Acad Sci U S A; 2012 Jan; 109(3):917-22. PubMed ID: 22210114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The DeltaF508 mutation disrupts packing of the transmembrane segments of the cystic fibrosis transmembrane conductance regulator.
    Chen EY; Bartlett MC; Loo TW; Clarke DM
    J Biol Chem; 2004 Sep; 279(38):39620-7. PubMed ID: 15272010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The DeltaF508 cystic fibrosis mutation impairs domain-domain interactions and arrests post-translational folding of CFTR.
    Du K; Sharma M; Lukacs GL
    Nat Struct Mol Biol; 2005 Jan; 12(1):17-25. PubMed ID: 15619635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diffusional mobility of the cystic fibrosis transmembrane conductance regulator mutant, delta F508-CFTR, in the endoplasmic reticulum measured by photobleaching of GFP-CFTR chimeras.
    Haggie PM; Stanton BA; Verkman AS
    J Biol Chem; 2002 May; 277(19):16419-25. PubMed ID: 11877404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The primary folding defect and rescue of ΔF508 CFTR emerge during translation of the mutant domain.
    Hoelen H; Kleizen B; Schmidt A; Richardson J; Charitou P; Thomas PJ; Braakman I
    PLoS One; 2010 Nov; 5(11):e15458. PubMed ID: 21152102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The V510D suppressor mutation stabilizes DeltaF508-CFTR at the cell surface.
    Loo TW; Bartlett MC; Clarke DM
    Biochemistry; 2010 Aug; 49(30):6352-7. PubMed ID: 20590134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Restoration of domain folding and interdomain assembly by second-site suppressors of the DeltaF508 mutation in CFTR.
    He L; Aleksandrov LA; Cui L; Jensen TJ; Nesbitt KL; Riordan JR
    FASEB J; 2010 Aug; 24(8):3103-12. PubMed ID: 20233947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal instability of ΔF508 cystic fibrosis transmembrane conductance regulator (CFTR) channel function: protection by single suppressor mutations and inhibiting channel activity.
    Liu X; O'Donnell N; Landstrom A; Skach WR; Dawson DC
    Biochemistry; 2012 Jun; 51(25):5113-24. PubMed ID: 22680785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.