BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

798 related articles for article (PubMed ID: 9188504)

  • 1. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus.
    Vivès E; Brodin P; Lebleu B
    J Biol Chem; 1997 Jun; 272(25):16010-7. PubMed ID: 9188504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translocation and nuclear accumulation of monomer and dimer of HIV-1 Tat basic domain in triticale mesophyll protoplasts.
    Chugh A; Eudes F
    Biochim Biophys Acta; 2007 Mar; 1768(3):419-26. PubMed ID: 17214959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tat peptide-mediated cellular delivery: back to basics.
    Brooks H; Lebleu B; Vivès E
    Adv Drug Deliv Rev; 2005 Feb; 57(4):559-77. PubMed ID: 15722164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cationic cell-penetrating peptide CPP(TAT) derived from the HIV-1 protein TAT is rapidly transported into living fibroblasts: optical, biophysical, and metabolic evidence.
    Ziegler A; Nervi P; Dürrenberger M; Seelig J
    Biochemistry; 2005 Jan; 44(1):138-48. PubMed ID: 15628854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arginine-rich peptides: potential for intracellular delivery of macromolecules and the mystery of the translocation mechanisms.
    Futaki S
    Int J Pharm; 2002 Oct; 245(1-2):1-7. PubMed ID: 12270237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different mechanisms for cellular internalization of the HIV-1 Tat-derived cell penetrating peptide and recombinant proteins fused to Tat.
    Silhol M; Tyagi M; Giacca M; Lebleu B; Vivès E
    Eur J Biochem; 2002 Jan; 269(2):494-501. PubMed ID: 11856307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HIV-1 TAT-mediated protein transduction and subcellular localization using novel expression vectors.
    Yang Y; Ma J; Song Z; Wu M
    FEBS Lett; 2002 Dec; 532(1-2):36-44. PubMed ID: 12459459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery.
    Futaki S; Suzuki T; Ohashi W; Yagami T; Tanaka S; Ueda K; Sugiura Y
    J Biol Chem; 2001 Feb; 276(8):5836-40. PubMed ID: 11084031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters.
    Wender PA; Mitchell DJ; Pattabiraman K; Pelkey ET; Steinman L; Rothbard JB
    Proc Natl Acad Sci U S A; 2000 Nov; 97(24):13003-8. PubMed ID: 11087855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a nuclear transport inhibitory signal (NTIS) in the basic domain of HIV-1 Vif protein.
    Friedler A; Zakai N; Karni O; Friedler D; Gilon C; Loyter A
    J Mol Biol; 1999 Jun; 289(3):431-7. PubMed ID: 10356319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of HIV-1 transcription and virus replication using soluble Tat peptide analogs.
    Kashanchi F; Sadaie MR; Brady JN
    Virology; 1997 Jan; 227(2):431-8. PubMed ID: 9018142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of nuclear internalization of Tat peptides by fluorescent dyes and receptor-avid peptides.
    Shen D; Liang K; Ye Y; Tetteh E; Achilefu S
    FEBS Lett; 2007 May; 581(9):1793-9. PubMed ID: 17416362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aqueous solution structure of a hybrid lentiviral Tat peptide and a model of its interaction with HIV-1 TAR RNA.
    Mujeeb A; Parslow TG; Yuan YC; James TL
    J Biomol Struct Dyn; 1996 Feb; 13(4):649-60. PubMed ID: 8906885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR structure of a biologically active peptide containing the RNA-binding domain of human immunodeficiency virus type 1 Tat.
    Mujeeb A; Bishop K; Peterlin BM; Turck C; Parslow TG; James TL
    Proc Natl Acad Sci U S A; 1994 Aug; 91(17):8248-52. PubMed ID: 8058789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tat(48-60) peptide amino acid sequence is not unique in its cell penetrating properties and cell-surface glycosaminoglycans inhibit its cellular uptake.
    Subrizi A; Tuominen E; Bunker A; Róg T; Antopolsky M; Urtti A
    J Control Release; 2012 Mar; 158(2):277-85. PubMed ID: 22100438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macrocyclic chelators with paramagnetic cations are internalized into mammalian cells via a HIV-tat derived membrane translocation peptide.
    Bhorade R; Weissleder R; Nakakoshi T; Moore A; Tung CH
    Bioconjug Chem; 2000; 11(3):301-5. PubMed ID: 10821645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endocytosis and targeting of exogenous HIV-1 Tat protein.
    Mann DA; Frankel AD
    EMBO J; 1991 Jul; 10(7):1733-9. PubMed ID: 2050110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Translocation of branched-chain arginine peptides through cell membranes: flexibility in the spatial disposition of positive charges in membrane-permeable peptides.
    Futaki S; Nakase I; Suzuki T; Youjun Z; Sugiura Y
    Biochemistry; 2002 Jun; 41(25):7925-30. PubMed ID: 12069581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High affinity binding of TAR RNA by the human immunodeficiency virus type-1 tat protein requires base-pairs in the RNA stem and amino acid residues flanking the basic region.
    Churcher MJ; Lamont C; Hamy F; Dingwall C; Green SM; Lowe AD; Butler JG; Gait MJ; Karn J
    J Mol Biol; 1993 Mar; 230(1):90-110. PubMed ID: 8450553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytoplasmic and nuclear delivery of a TAT-derived peptide and a beta-peptide after endocytic uptake into HeLa cells.
    Potocky TB; Menon AK; Gellman SH
    J Biol Chem; 2003 Dec; 278(50):50188-94. PubMed ID: 14517218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.