BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 9188560)

  • 1. Sequence- and structure-specific determinants in the interaction between the RNA encapsidation signal and reverse transcriptase of avian hepatitis B viruses.
    Beck J; Nassal M
    J Virol; 1997 Jul; 71(7):4971-80. PubMed ID: 9188560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental confirmation of a hepatitis B virus (HBV) epsilon-like bulge-and-loop structure in avian HBV RNA encapsidation signals.
    Beck J; Bartos H; Nassal M
    Virology; 1997 Jan; 227(2):500-4. PubMed ID: 9018150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chimeras of duck and heron hepatitis B viruses provide evidence for functional interactions between viral components of pregenomic RNA encapsidation.
    Ostrow KM; Loeb DD
    J Virol; 2004 Aug; 78(16):8780-7. PubMed ID: 15280486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Few basepairing-independent motifs in the apical half of the avian HBV ε RNA stem-loop determine site-specific initiation of protein-priming.
    Gajer M; Dörnbrack K; Rösler C; Schmid B; Beck J; Nassal M
    Sci Rep; 2017 Aug; 7(1):7120. PubMed ID: 28769080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The encapsidation signal on the hepatitis B virus RNA pregenome forms a stem-loop structure that is critical for its function.
    Knaus T; Nassal M
    Nucleic Acids Res; 1993 Aug; 21(17):3967-75. PubMed ID: 7690471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamics and NMR studies on Duck, Heron and Human HBV encapsidation signals.
    Girard FC; Ottink OM; Ampt KA; Tessari M; Wijmenga SS
    Nucleic Acids Res; 2007; 35(8):2800-11. PubMed ID: 17430968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SELEX-derived aptamers of the duck hepatitis B virus RNA encapsidation signal distinguish critical and non-critical residues for productive initiation of reverse transcription.
    Hu K; Beck J; Nassal M
    Nucleic Acids Res; 2004; 32(14):4377-89. PubMed ID: 15314208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for multiple distinct interactions between hepatitis B virus P protein and its cognate RNA encapsidation signal during initiation of reverse transcription.
    Feng H; Chen P; Zhao F; Nassal M; Hu K
    PLoS One; 2013; 8(8):e72798. PubMed ID: 23977352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relaxing the restricted structural dynamics in the human hepatitis B virus RNA encapsidation signal enables replication initiation in vitro.
    Dörnbrack K; Beck J; Nassal M
    PLoS Pathog; 2022 Mar; 18(3):e1010362. PubMed ID: 35259189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the cis-acting contributions to avian hepadnavirus RNA encapsidation.
    Ostrow KM; Loeb DD
    J Virol; 2002 Sep; 76(18):9087-95. PubMed ID: 12186892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of a functional hepatitis B virus replication initiation complex involves a major structural alteration in the RNA template.
    Beck J; Nassal M
    Mol Cell Biol; 1998 Nov; 18(11):6265-72. PubMed ID: 9774643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selected mutations of the duck hepatitis B virus P gene RNase H domain affect both RNA packaging and priming of minus-strand DNA synthesis.
    Chen Y; Robinson WS; Marion PL
    J Virol; 1994 Aug; 68(8):5232-8. PubMed ID: 8035519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A bulged region of the hepatitis B virus RNA encapsidation signal contains the replication origin for discontinuous first-strand DNA synthesis.
    Nassal M; Rieger A
    J Virol; 1996 May; 70(5):2764-73. PubMed ID: 8627750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The unstable part of the apical stem of duck hepatitis B virus epsilon shows enhanced base pair opening but not pico- to nanosecond dynamics and is essential for reverse transcriptase binding.
    Ampt KA; van der Werf RM; Nelissen FH; Tessari M; Wijmenga SS
    Biochemistry; 2009 Nov; 48(44):10499-508. PubMed ID: 19817488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A high level of mutation tolerance in the multifunctional sequence encoding the RNA encapsidation signal of an avian hepatitis B virus and slow evolution rate revealed by in vivo infection.
    Schmid B; Rösler C; Nassal M
    J Virol; 2011 Sep; 85(18):9300-13. PubMed ID: 21752921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hepadnavirus reverse transcription initiates within the stem-loop of the RNA packaging signal and employs a novel strand transfer.
    Tavis JE; Perri S; Ganem D
    J Virol; 1994 Jun; 68(6):3536-43. PubMed ID: 8189492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [An undamaged bulge in epsilon is essential for initiating priming of DHBV reverse transcriptase].
    Hu KH; Feng H; Li H
    Bing Du Xue Bao; 2009 Jul; 25(4):296-302. PubMed ID: 19769164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbonyl J acid derivatives block protein priming of hepadnaviral P protein and DNA-dependent DNA synthesis activity of hepadnaviral nucleocapsids.
    Wang YX; Wen YM; Nassal M
    J Virol; 2012 Sep; 86(18):10079-92. PubMed ID: 22787212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. dNTP versus NTP discrimination by phenylalanine 451 in duck hepatitis B virus P protein indicates a common structure of the dNTP-binding pocket with other reverse transcriptases.
    Beck J; Vogel M; Nassal M
    Nucleic Acids Res; 2002 Apr; 30(7):1679-87. PubMed ID: 11917030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequences in the terminal protein and reverse transcriptase domains of the hepatitis B virus polymerase contribute to RNA binding and encapsidation.
    Cao F; Jones S; Li W; Cheng X; Hu Y; Hu J; Tavis JE
    J Viral Hepat; 2014 Dec; 21(12):882-93. PubMed ID: 24401091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.