These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 9188693)

  • 1. The C-terminal region of nisin is responsible for the initial interaction of nisin with the target membrane.
    Breukink E; van Kraaij C; Demel RA; Siezen RJ; Kuipers OP; de Kruijff B
    Biochemistry; 1997 Jun; 36(23):6968-76. PubMed ID: 9188693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The orientation of nisin in membranes.
    Breukink E; van Kraaij C; van Dalen A; Demel RA; Siezen RJ; de Kruijff B; Kuipers OP
    Biochemistry; 1998 Jun; 37(22):8153-62. PubMed ID: 9609711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pore formation by nisin involves translocation of its C-terminal part across the membrane.
    van Kraaij C; Breukink E; Noordermeer MA; Demel RA; Siezen RJ; Kuipers OP; de Kruijff B
    Biochemistry; 1998 Nov; 37(46):16033-40. PubMed ID: 9819196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-function relations of variant and fragment nisins studied with model membrane systems.
    Giffard CJ; Dodd HM; Horn N; Ladha S; Mackie AR; Parr A; Gasson MJ; Sanders D
    Biochemistry; 1997 Apr; 36(13):3802-10. PubMed ID: 9092809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mode of action of lipid II-targeting lantibiotics.
    Bauer R; Dicks LM
    Int J Food Microbiol; 2005 May; 101(2):201-16. PubMed ID: 15862882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis.
    Ziegler A; Blatter XL; Seelig A; Seelig J
    Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nisin Z, mutant nisin Z and lacticin 481 interactions with anionic lipids correlate with antimicrobial activity. A monolayer study.
    Demel RA; Peelen T; Siezen RJ; De Kruijff B; Kuipers OP
    Eur J Biochem; 1996 Jan; 235(1-2):267-74. PubMed ID: 8631341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of Nisin Z to bilayer vesicles as determined with isothermal titration calorimetry.
    Breukink E; Ganz P; de Kruijff B; Seelig J
    Biochemistry; 2000 Aug; 39(33):10247-54. PubMed ID: 10956014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of lipid II in membrane binding of and pore formation by nisin analyzed by two combined biosensor techniques.
    Christ K; Wiedemann I; Bakowsky U; Sahl HG; Bendas G
    Biochim Biophys Acta; 2007 Mar; 1768(3):694-704. PubMed ID: 17254547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of bicyclic alkene-/alkane-bridged nisin mimics by ring-closing metathesis and their biochemical evaluation as lipid II binders: toward the design of potential novel antibiotics.
    Ghalit N; Reichwein JF; Hilbers HW; Breukink E; Rijkers DT; Liskamp RM
    Chembiochem; 2007 Sep; 8(13):1540-54. PubMed ID: 17674393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational study of nisin interaction with model membrane.
    Lins L; Ducarme P; Breukink E; Brasseur R
    Biochim Biophys Acta; 1999 Aug; 1420(1-2):111-20. PubMed ID: 10446296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magainin 2 amide interaction with lipid membranes: calorimetric detection of peptide binding and pore formation.
    Wenk MR; Seelig J
    Biochemistry; 1998 Mar; 37(11):3909-16. PubMed ID: 9521712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concentration-dependent behavior of nisin interaction with supported bilayer lipid membrane.
    Huang W; Zhang Z; Han X; Wang J; Tang J; Dong S; Wang E
    Biophys Chem; 2002 Nov; 99(3):271-9. PubMed ID: 12408941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring peptide membrane interaction using surface plasmon resonance: differentiation between pore formation versus membrane disruption by lytic peptides.
    Papo N; Shai Y
    Biochemistry; 2003 Jan; 42(2):458-66. PubMed ID: 12525173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural features of the final intermediate in the biosynthesis of the lantibiotic nisin. Influence of the leader peptide.
    van den Hooven HW; Rollema HS; Siezen RJ; Hilbers CW; Kuipers OP
    Biochemistry; 1997 Nov; 36(46):14137-45. PubMed ID: 9369486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping the targeted membrane pore formation mechanism by solution NMR: the nisin Z and lipid II interaction in SDS micelles.
    Hsu ST; Breukink E; de Kruijff B; Kaptein R; Bonvin AM; van Nuland NA
    Biochemistry; 2002 Jun; 41(24):7670-6. PubMed ID: 12056898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescent labeling of nisin Z and assessment of anti-listerial action.
    Imran M; Revol-Junelles AM; de Bruin M; Paris C; Breukink E; Desobry S
    J Microbiol Methods; 2013 Nov; 95(2):107-13. PubMed ID: 23892059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual antibacterial mechanisms of nisin Z against Gram-positive and Gram-negative bacteria.
    Kuwano K; Tanaka N; Shimizu T; Nagatoshi K; Nou S; Sonomoto K
    Int J Antimicrob Agents; 2005 Nov; 26(5):396-402. PubMed ID: 16226432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of contraceptive antimicrobial peptide nisin with target cell membranes: implications for use as vaginal microbicide.
    Gupta SM; Aranha CC; Bellare JR; Reddy KV
    Contraception; 2009 Sep; 80(3):299-307. PubMed ID: 19698825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of the angle subtended by the positively charged helix face on the membrane activity of amphipathic, antibacterial peptides.
    Wieprecht T; Dathe M; Epand RM; Beyermann M; Krause E; Maloy WL; MacDonald DL; Bienert M
    Biochemistry; 1997 Oct; 36(42):12869-80. PubMed ID: 9335545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.