These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 9188698)
1. Mutagenesis studies of thyroxine binding to human serum albumin define an important structural characteristic of subdomain 2A. Petersen CE; Ha CE; Harohalli K; Park D; Bhagavan NV Biochemistry; 1997 Jun; 36(23):7012-7. PubMed ID: 9188698 [TBL] [Abstract][Full Text] [Related]
2. Mutations in a specific human serum albumin thyroxine binding site define the structural basis of familial dysalbuminemic hyperthyroxinemia. Petersen CE; Ha CE; Jameson DM; Bhagavan NV J Biol Chem; 1996 Aug; 271(32):19110-7. PubMed ID: 8702585 [TBL] [Abstract][Full Text] [Related]
3. Familial dysalbuminemic byperthyroxinemia may result in altered warfarin pharmacokinetics. Petersen CE; Ha CE; Harohalli K; Park DS; Bhagavan NV Chem Biol Interact; 2000 Feb; 124(3):161-72. PubMed ID: 10728776 [TBL] [Abstract][Full Text] [Related]
4. Analysis of tryptophan fluorescence lifetimes in a series of human serum albumin mutants with substitutions in subdomain 2A. Siemiarczuk A; Petersen CE; Ha CE; Yang J; Bhagavan NV Cell Biochem Biophys; 2004; 40(2):115-22. PubMed ID: 15054218 [TBL] [Abstract][Full Text] [Related]
5. Expression of a human serum albumin fragment (consisting of subdomains IA, IB, and IIA) and a study of its properties. Park DS; Petersen CE; Ha C; Harohalli K; Feix JB; Bhagavan NV IUBMB Life; 1999 Aug; 48(2):169-74. PubMed ID: 10794593 [TBL] [Abstract][Full Text] [Related]
6. Structural basis of albumin-thyroxine interactions and familial dysalbuminemic hyperthyroxinemia. Petitpas I; Petersen CE; Ha CE; Bhattacharya AA; Zunszain PA; Ghuman J; Bhagavan NV; Curry S Proc Natl Acad Sci U S A; 2003 May; 100(11):6440-5. PubMed ID: 12743361 [TBL] [Abstract][Full Text] [Related]
7. Mutants and molecular dockings reveal that the primary L-thyroxine binding site in human serum albumin is not the one which can cause familial dysalbuminemic hyperthyroxinemia. Kragh-Hansen U; Minchiotti L; Coletta A; Bienk K; Galliano M; Schiøtt B; Iwao Y; Ishima Y; Otagiri M Biochim Biophys Acta; 2016 Apr; 1860(4):648-60. PubMed ID: 26777880 [TBL] [Abstract][Full Text] [Related]
8. Expression of a human serum albumin variant with high affinity for thyroxine. Petersen CE; Ha CE; Mandel M; Bhagavan NV Biochem Biophys Res Commun; 1995 Sep; 214(3):1121-9. PubMed ID: 7575519 [TBL] [Abstract][Full Text] [Related]
9. Fluorescence investigations of albumin from patients with familial dysalbuminemic hyperthyroxinemia. Dughi C; Bhagavan NV; Jameson DM Photochem Photobiol; 1993 Mar; 57(3):416-9. PubMed ID: 8475173 [TBL] [Abstract][Full Text] [Related]
10. Artifactually elevated serum-free thyroxine levels measured by equilibrium dialysis in a pregnant woman with familial dysalbuminemic hyperthyroxinemia. Hoshikawa S; Mori K; Kaise N; Nakagawa Y; Ito S; Yoshida K Thyroid; 2004 Feb; 14(2):155-60. PubMed ID: 15068631 [TBL] [Abstract][Full Text] [Related]
11. Structural investigations of a new familial dysalbuminemic hyperthyroxinemia genotype. Petersen CE; Ha CE; Harohalli K; Park DS; Feix JB; Isozaki O; Bhagavan NV Clin Chem; 1999 Aug; 45(8 Pt 1):1248-54. PubMed ID: 10430791 [TBL] [Abstract][Full Text] [Related]
12. Location of high and low affinity fatty acid binding sites on human serum albumin revealed by NMR drug-competition analysis. Simard JR; Zunszain PA; Hamilton JA; Curry S J Mol Biol; 2006 Aug; 361(2):336-51. PubMed ID: 16844140 [TBL] [Abstract][Full Text] [Related]
13. SEVEN FAMILIAL DYSALBUMINEMIC HYPERTHYROXINEMIA CASES IN THREE UNRELATED JAPANESE FAMILIES AND HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY ANALYSIS OF THE THYROXINE BINDING PROFILE. Nagano H; Nakagawa Y; Ishikawa N; Watanabe H; Miyabayashi Y; Nakayama A; Fujimoto M; Komai E; Shiga A; Tamura A; Kono T; Takiguchi T; Higuchi S; Sakuma I; Hashimoto N; Suzuki S; Koide H; Yokote K; Tanaka T Endocr Pract; 2017 Nov; 23(11):1325-1332. PubMed ID: 28816534 [TBL] [Abstract][Full Text] [Related]
14. Characterization of subdomain IIA binding site of human serum albumin in its native, unfolded, and refolded states using small molecular probes. Abou-Zied OK; Al-Shihi OI J Am Chem Soc; 2008 Aug; 130(32):10793-801. PubMed ID: 18642807 [TBL] [Abstract][Full Text] [Related]
15. Histidine146 of human serum albumin plays a prominent role at the interface of subdomains IA and IIA in allosteric ligand binding. Kaneko K; Chuang VT; Minomo A; Yamasaki K; Bhagavan NV; Maruyama T; Otagiri M IUBMB Life; 2011 Apr; 63(4):277-85. PubMed ID: 21488149 [TBL] [Abstract][Full Text] [Related]
16. Chain length-dependent binding of fatty acid anions to human serum albumin studied by site-directed mutagenesis. Kragh-Hansen U; Watanabe H; Nakajou K; Iwao Y; Otagiri M J Mol Biol; 2006 Oct; 363(3):702-12. PubMed ID: 16979183 [TBL] [Abstract][Full Text] [Related]
17. Structural basis of transport of lysophospholipids by human serum albumin. Guo S; Shi X; Yang F; Chen L; Meehan EJ; Bian C; Huang M Biochem J; 2009 Sep; 423(1):23-30. PubMed ID: 19601929 [TBL] [Abstract][Full Text] [Related]
18. Familial dysalbuminemic hyperthyroxinemia in a Swiss family caused by a mutant albumin (R218P) shows an apparent discrepancy between serum concentration and affinity for thyroxine. Pannain S; Feldman M; Eiholzer U; Weiss RE; Scherberg NH; Refetoff S J Clin Endocrinol Metab; 2000 Aug; 85(8):2786-92. PubMed ID: 10946882 [TBL] [Abstract][Full Text] [Related]
19. Arginine 485 of human serum albumin interacts with the benzophenone moiety of ketoprofen in the binding pocket of subdomain III A and III B. Kaneko K; Chuang VT; Ito T; Suenaga A; Watanabe H; Maruyama T; Otagiri M Pharmazie; 2012 May; 67(5):414-8. PubMed ID: 22764574 [TBL] [Abstract][Full Text] [Related]
20. Studies on the nature of iodothyronine binding in familial dysalbuminemic hyperthyroxinemia. Divino CM; Schussler GC J Clin Endocrinol Metab; 1990 Jul; 71(1):98-104. PubMed ID: 2370303 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]