These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 9188771)

  • 1. Rhodopsin phosphorylation in bovine rod outer segments is more sensitive to the inhibitory action of recoverin at the low rhodopsin bleaching than it is at the high bleaching.
    Senin II; Zargarov AA; Akhtar M; Philippov PP
    FEBS Lett; 1997 May; 408(3):251-4. PubMed ID: 9188771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recoverin inhibits the phosphorylation of dark-adapted rhodopsin more than it does that of bleached rhodopsin: a possible mechanism through which rhodopsin kinase is prevented from participation in a side reaction.
    Senin II; Dean KR; Zargarov AA; Akhtar M; Philippov PP
    Biochem J; 1997 Jan; 321 ( Pt 2)(Pt 2):551-5. PubMed ID: 9020894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recoverin mediates the calcium effect upon rhodopsin phosphorylation and cGMP hydrolysis in bovine retina rod cells.
    Gorodovikova EN; Gimelbrant AA; Senin II; Philippov PP
    FEBS Lett; 1994 Aug; 349(2):187-90. PubMed ID: 8050563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N-myristoylation of recoverin enhances its efficiency as an inhibitor of rhodopsin kinase.
    Senin II; Zargarov AA; Alekseev AM; Gorodovikova EN; Lipkin VM; Philippov PP
    FEBS Lett; 1995 Nov; 376(1-2):87-90. PubMed ID: 8521974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of rhodopsin kinase by recoverin. Further evidence for a negative feedback system in phototransduction.
    Klenchin VA; Calvert PD; Bownds MD
    J Biol Chem; 1995 Jul; 270(27):16147-52. PubMed ID: 7608179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium-sensitive control of rhodopsin phosphorylation in the reconstituted system consisting of photoreceptor membranes, rhodopsin kinase and recoverin.
    Gorodovikova EN; Senin II; Philippov PP
    FEBS Lett; 1994 Oct; 353(2):171-2. PubMed ID: 7926045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium-bound recoverin targets rhodopsin kinase to membranes to inhibit rhodopsin phosphorylation.
    Sanada K; Shimizu F; Kameyama K; Haga K; Haga T; Fukada Y
    FEBS Lett; 1996 Apr; 384(3):227-30. PubMed ID: 8617359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of rhodopsin phosphorylation by non-myristoylated recombinant recoverin.
    Kawamura S; Cox JA; Nef P
    Biochem Biophys Res Commun; 1994 Aug; 203(1):121-7. PubMed ID: 8074645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ca(2+)-dependent interaction of recoverin with rhodopsin kinase.
    Chen CK; Inglese J; Lefkowitz RJ; Hurley JB
    J Biol Chem; 1995 Jul; 270(30):18060-6. PubMed ID: 7629115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular mechanism of S-modulin action: binding target and effect of ATP.
    Sato N; Kawamura S
    J Biochem; 1997 Dec; 122(6):1139-45. PubMed ID: 9498557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhodopsin kinase inhibition by recoverin. Function of recoverin myristoylation.
    Calvert PD; Klenchin VA; Bownds MD
    J Biol Chem; 1995 Oct; 270(41):24127-9. PubMed ID: 7592614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Obtaining and characterization of EF-hand mutants of recoverin.
    Alekseev AM; Shulga-Morskoy SV; Zinchenko DV; Shulga-Morskaya SA; Suchkov DV; Vaganova SA; Senin II; Zargarov AA; Lipkin VM; Akhtar M; Philippov PP
    FEBS Lett; 1998 Nov; 440(1-2):116-8. PubMed ID: 9862438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autophosphorylation and ADP regulate the Ca2+-dependent interaction of recoverin with rhodopsin kinase.
    Satpaev DK; Chen CK; Scotti A; Simon MI; Hurley JB; Slepak VZ
    Biochemistry; 1998 Jul; 37(28):10256-62. PubMed ID: 9665733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorylation of recoverin, the calcium-sensitive activator of photoreceptor guanylyl cyclase.
    Lambrecht HG; Koch KW
    FEBS Lett; 1991 Dec; 294(3):207-9. PubMed ID: 1684552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recoverin and rhodopsin kinase activity in detergent-resistant membrane rafts from rod outer segments.
    Senin II; Höppner-Heitmann D; Polkovnikova OO; Churumova VA; Tikhomirova NK; Philippov PP; Koch KW
    J Biol Chem; 2004 Nov; 279(47):48647-53. PubMed ID: 15355976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification of rhodopsin kinase by recoverin affinity chromatography.
    Chen CK; Hurley JB
    Methods Enzymol; 2000; 315():404-10. PubMed ID: 10736716
    [No Abstract]   [Full Text] [Related]  

  • 17. Regulation of rhodopsin phosphorylation by a family of neuronal calcium sensors.
    De Castro E; Nef S; Fiumelli H; Lenz SE; Kawamura S; Nef P
    Biochem Biophys Res Commun; 1995 Nov; 216(1):133-40. PubMed ID: 7488079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca2+-dependent control of rhodopsin phosphorylation: recoverin and rhodopsin kinase.
    Senin II; Koch KW; Akhtar M; Philippov PP
    Adv Exp Med Biol; 2002; 514():69-99. PubMed ID: 12596916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium-dependent regulation of rhodopsin phosphorylation.
    Kawamura S
    Novartis Found Symp; 1999; 224():208-18; discussion 218-24. PubMed ID: 10614053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ca2+-myristoyl switch in the neuronal calcium sensor recoverin requires different functions of Ca2+-binding sites.
    Senin II; Fischer T; Komolov KE; Zinchenko DV; Philippov PP; Koch KW
    J Biol Chem; 2002 Dec; 277(52):50365-72. PubMed ID: 12393897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.