These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 9188804)

  • 1. Substrate specificity of the mammary tissue anionic amino acid carrier operating in the cotransport and exchange modes.
    Millar ID; Calvert DT; Lomax MA; Shennan DB
    Biochim Biophys Acta; 1997 May; 1326(1):92-102. PubMed ID: 9188804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanism of L-glutamate transport by lactating rat mammary tissue.
    Millar ID; Calvert DT; Lomax MA; Shennan DB
    Biochim Biophys Acta; 1996 Jul; 1282(2):200-6. PubMed ID: 8703974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The regulation of Na(+)-dependent anionic amino acid transport by the rat mammary gland.
    Millar ID; Shennan DB
    Biochim Biophys Acta; 1999 Oct; 1421(2):340-6. PubMed ID: 10518703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide aminonitrogen transport by the lactating rat mammary gland.
    Shennan DB; Calvert DT; Backwell FR; Boyd CA
    Biochim Biophys Acta; 1998 Aug; 1373(1):252-60. PubMed ID: 9733976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties of excitatory amino acid transport in the human U373 astrocytoma cell line.
    Dunlop J; Lou Z; McIlvain HB
    Brain Res; 1999 Aug; 839(2):235-42. PubMed ID: 10519046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction between anionic amino acids and the mammary tissue (Na(+)-glutamate) cotransporter.
    Millar ID; Calvert DT; Lomax MA; Shennan DB
    Biochem Soc Trans; 1996 May; 24(2):333S. PubMed ID: 8736991
    [No Abstract]   [Full Text] [Related]  

  • 7. Phosphate transport via Na+ -Pi cotransport and anion exchange in lactating rat mammary tissue.
    Shillingford JM; Calvert DT; Beechey RB; Shennan DB
    Exp Physiol; 1996 Mar; 81(2):273-84. PubMed ID: 8845141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport of cysteate by synaptosomes isolated from rat brain: evidence that it utilizes the same transporter as aspartate, glutamate, and cysteine sulfinate.
    Wilson DF; Pastuszko A
    J Neurochem; 1986 Oct; 47(4):1091-7. PubMed ID: 2875128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Na+-coupled glutamate/aspartate transport by a rat brain astrocyte line expressing GLAST and EAAC1.
    Kimmich GA; Roussie J; Manglapus M; Randles J
    J Membr Biol; 2001 Jul; 182(1):17-30. PubMed ID: 11426296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of anionic amino acid transport systems in mouse mammary gland.
    Kansal VK; Sharma R; Rehan G
    Indian J Exp Biol; 2000 Nov; 38(11):1097-103. PubMed ID: 11395952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics of L-aspartate transport and expression of EAAC-1 in sarcolemmal vesicles and isolated cells from rat heart.
    King N; Williams H; McGivan JD; Suleiman MS
    Cardiovasc Res; 2001 Oct; 52(1):84-94. PubMed ID: 11557236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics of L-carnitine transport by lactating rat mammary tissue.
    Shennan DB; Grant A; Ramsay RR; Burns C; Zammit VA
    Biochim Biophys Acta; 1998 Jul; 1393(1):49-56. PubMed ID: 9714731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iodide transport in lactating rat mammary tissue via a pathway independent from the Na+/I- cotransporter: evidence for sulfate/iodide exchange.
    Shennan DB
    Biochem Biophys Res Commun; 2001 Feb; 280(5):1359-63. PubMed ID: 11162679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Na+-dependent glutamate transport activity in synaptosomes, C6 glioma, and Xenopus oocytes expressing excitatory amino acid carrier 1 (EAAC1).
    Dowd LA; Coyle AJ; Rothstein JD; Pritchett DB; Robinson MB
    Mol Pharmacol; 1996 Mar; 49(3):465-73. PubMed ID: 8643086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. L-aspartate but not the D form is secreted through microvesicle-mediated exocytosis and is sequestered through Na+-dependent transporter in rat pinealocytes.
    Yatsushiro S; Yamada H; Kozaki S; Kumon H; Michibata H; Yamamoto A; Moriyama Y
    J Neurochem; 1997 Jul; 69(1):340-7. PubMed ID: 9202328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differentiation of substrate and nonsubstrate inhibitors of the high-affinity, sodium-dependent glutamate transporters.
    Koch HP; Kavanaugh MP; Esslinger CS; Zerangue N; Humphrey JM; Amara SG; Chamberlin AR; Bridges RJ
    Mol Pharmacol; 1999 Dec; 56(6):1095-104. PubMed ID: 10570036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of methylaminoisobutyric acid transport by system A in rat mammary gland.
    Tovar AR; Avila E; DeSantiago S; Torres N
    Metabolism; 2000 Jul; 49(7):873-9. PubMed ID: 10909998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The transport of acidic amino acids and their analogues across monolayers of human intestinal absorptive (Caco-2) cells in vitro.
    Nicklin PL; Irwin WJ; Hassan IF; Mackay M; Dixon HB
    Biochim Biophys Acta; 1995 Nov; 1269(2):176-86. PubMed ID: 7488651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rat hepatoma cells express novel transport systems for glutamine and glutamate in addition to those present in normal rat hepatocytes.
    McGivan JD
    Biochem J; 1998 Feb; 330 ( Pt 1)(Pt 1):255-60. PubMed ID: 9461518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolism of aminoacyl-p-nitroanilides by rat mammary tissue.
    Shennan DB; Backwell FR; Calvert DT
    Biochim Biophys Acta; 1999 Apr; 1427(2):227-35. PubMed ID: 10216239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.