BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 9189200)

  • 1. Experimental correlation between T2* and ultimate compressive strength in lumbar porcine vertebrae.
    Brismar TB; Hindmarsh T; Ringertz H
    Acad Radiol; 1997 Jun; 4(6):426-30. PubMed ID: 9189200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gradient-echo magnetic resonance signal decay in a porcine vertebral body model: influence of chemical shift.
    Brismar TB; Ringertz H
    Acad Radiol; 1997 Jan; 4(1):43-8. PubMed ID: 9040869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties.
    Majumdar S; Kothari M; Augat P; Newitt DC; Link TM; Lin JC; Lang T; Lu Y; Genant HK
    Bone; 1998 May; 22(5):445-54. PubMed ID: 9600777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of changes in trabecular bone architecture and mechanical properties of minipig vertebrae by three-dimensional magnetic resonance microimaging and finite element modeling.
    Borah B; Dufresne TE; Cockman MD; Gross GJ; Sod EW; Myers WR; Combs KS; Higgins RE; Pierce SA; Stevens ML
    J Bone Miner Res; 2000 Sep; 15(9):1786-97. PubMed ID: 10976998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vertebral Body Compressive Strength Evaluated by Dual-Energy X-Ray Absorptiometry and Hounsfield Units In Vitro.
    Mi J; Li K; Zhao X; Zhao CQ; Li H; Zhao J
    J Clin Densitom; 2018; 21(1):148-153. PubMed ID: 27623115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MR imaging-guided radio-frequency thermal ablation of the lumbar vertebrae in porcine models.
    Nour SG; Aschoff AJ; Mitchell IC; Emancipator SN; Duerk JL; Lewin JS
    Radiology; 2002 Aug; 224(2):452-62. PubMed ID: 12147842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Axial compressive strength of thoraco-lumbar vertebrae--an experimental biomechanical study].
    Konermann W; Stubbe F; Link T; Meier N
    Z Orthop Ihre Grenzgeb; 1999; 137(3):223-31. PubMed ID: 10441827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatigue fracture of human lumbar vertebrae.
    Brinckmann P; Biggemann M; Hilweg D
    Clin Biomech (Bristol, Avon); 1988; 3 Suppl 1():i-S23. PubMed ID: 23905925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of static torsion on the compressive strength of the spine: an in vitro analysis using a porcine spine model.
    Aultman CD; Drake JD; Callaghan JP; McGill SM
    Spine (Phila Pa 1976); 2004 Aug; 29(15):E304-9. PubMed ID: 15284524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The degenerative state of the intervertebral disk independently predicts the failure of human lumbar spine to high rate loading: an experimental study.
    Alkalay RN; Vader D; Hackney D
    Clin Biomech (Bristol, Avon); 2015 Feb; 30(2):211-8. PubMed ID: 25579978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An experimental study on the interface strength between titanium mesh cage and vertebra in reference to vertebral bone mineral density.
    Hasegawa K; Abe M; Washio T; Hara T
    Spine (Phila Pa 1976); 2001 Apr; 26(8):957-63. PubMed ID: 11317121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The load on the lumbar spine during asymmetrical bi-manual materials handling.
    Jäger M; Luttmann A
    Ergonomics; 1992; 35(7-8):783-805. PubMed ID: 1633789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural determinants of vertebral fracture risk.
    Melton LJ; Riggs BL; Keaveny TM; Achenbach SJ; Hoffmann PF; Camp JJ; Rouleau PA; Bouxsein ML; Amin S; Atkinson EJ; Robb RA; Khosla S
    J Bone Miner Res; 2007 Dec; 22(12):1885-92. PubMed ID: 17680721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The monotonic and fatigue properties of osteoporotic thoracic vertebral bodies.
    Lindsey DP; Kim MJ; Hannibal M; Alamin TF
    Spine (Phila Pa 1976); 2005 Mar; 30(6):645-9. PubMed ID: 15770179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Risk of vertebral insufficiency fractures in relation to compressive strength predicted by quantitative computed tomography.
    Biggemann M; Hilweg D; Seidel S; Horst M; Brinckmann P
    Eur J Radiol; 1991; 13(1):6-10. PubMed ID: 1832380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interrelationships between bone microarchitecture and strength in ovariectomized monkeys treated with teriparatide.
    Chen P; Jerome CP; Burr DB; Turner CH; Ma YL; Rana A; Sato M
    J Bone Miner Res; 2007 Jun; 22(6):841-8. PubMed ID: 17352652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Failure strength of human vertebrae: prediction using bone mineral density measured by DXA and bone volume by micro-CT.
    Perilli E; Briggs AM; Kantor S; Codrington J; Wark JD; Parkinson IH; Fazzalari NL
    Bone; 2012 Jun; 50(6):1416-25. PubMed ID: 22430313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trabecular structure assessment in lumbar vertebrae specimens using quantitative magnetic resonance imaging and relationship with mechanical competence.
    Beuf O; Newitt DC; Mosekilde L; Majumdar S
    J Bone Miner Res; 2001 Aug; 16(8):1511-9. PubMed ID: 11499874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of the cortical endplates has little effect on ultimate load and damage distribution in QCT-based voxel models of human lumbar vertebrae under axial compression.
    Maquer G; Dall'Ara E; Zysset PK
    J Biomech; 2012 Jun; 45(9):1733-8. PubMed ID: 22503577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noninvasive prediction of vertebral body compressive strength using nonlinear finite element method and an image based technique.
    Zeinali A; Hashemi B; Akhlaghpoor S
    Phys Med; 2010 Apr; 26(2):88-97. PubMed ID: 19781969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.