BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 9189261)

  • 1. Impairment of visual object-discrimination learning after perirhinal cortex ablation.
    Buckley MJ; Gaffan D
    Behav Neurosci; 1997 Jun; 111(3):467-75. PubMed ID: 9189261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monkeys (Macaca fascicularis) with rhinal cortex ablations succeed in object discrimination learning despite 24-hr intertrial intervals and fail at matching to sample despite double sample presentations.
    Gaffan D; Murray EA
    Behav Neurosci; 1992 Feb; 106(1):30-8. PubMed ID: 1554436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning and transfer of object-reward associations and the role of the perirhinal cortex.
    Buckley MJ; Gaffan D
    Behav Neurosci; 1998 Feb; 112(1):15-23. PubMed ID: 9517812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perirhinal cortex ablation impairs visual object identification.
    Buckley MJ; Gaffan D
    J Neurosci; 1998 Mar; 18(6):2268-75. PubMed ID: 9482811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of fornix transection and combined fornix transection, mammillary body lesions and hippocampal ablations on object-pair association memory in the rhesus monkey.
    Saunders RC; Weiskrantz L
    Behav Brain Res; 1989 Nov; 35(2):85-94. PubMed ID: 2510765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lesions of rat perirhinal cortex exacerbate the memory deficit observed following damage to the fimbria-fornix.
    Wiig KA; Bilkey DK
    Behav Neurosci; 1995 Aug; 109(4):620-30. PubMed ID: 7576206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the dorsal prestriate cortex in visuospatial configural discrimination by monkeys.
    Gaffan D; Harrison S
    Behav Brain Res; 1993 Sep; 56(2):119-25. PubMed ID: 8240707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visual response properties of single neurons in the temporal pole of behaving monkeys.
    Nakamura K; Matsumoto K; Mikami A; Kubota K
    J Neurophysiol; 1994 Mar; 71(3):1206-21. PubMed ID: 8201413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A reexamination of the concurrent discrimination learning task: the importance of anterior inferotemporal cortex, area TE.
    Buffalo EA; Stefanacci L; Squire LR; Zola SM
    Behav Neurosci; 1998 Feb; 112(1):3-14. PubMed ID: 9517811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional double dissociation between two inferior temporal cortical areas: perirhinal cortex versus middle temporal gyrus.
    Buckley MJ; Gaffan D; Murray EA
    J Neurophysiol; 1997 Feb; 77(2):587-98. PubMed ID: 9065832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissociated effects of perirhinal cortex ablation, fornix transection and amygdalectomy: evidence for multiple memory systems in the primate temporal lobe.
    Gaffan D
    Exp Brain Res; 1994; 99(3):411-22. PubMed ID: 7957720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissociation of the effects of inferior temporal and limbic lesions on object discrimination learning with 24-h intertrial intervals.
    Phillips RR; Malamut BL; Bachevalier J; Mishkin M
    Behav Brain Res; 1988 Feb; 27(2):99-107. PubMed ID: 3358857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age and sex differences in the effects of selective temporal lobe lesion on the formation of visual discrimination habits in rhesus monkeys (Macaca mulatta).
    Bachevalier J; Brickson M; Hagger C; Mishkin M
    Behav Neurosci; 1990 Dec; 104(6):885-99. PubMed ID: 2285487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elemental and configural visual discrimination learning following lesions to perirhinal cortex in the rat.
    Eacott MJ; Machin PE; Gaffan EA
    Behav Brain Res; 2001 Sep; 124(1):55-70. PubMed ID: 11423166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An experimental test of the theory that visual information is stored in the inferotemporal cortex.
    Cirillo RA; George PJ; Horel JA; Martin-Elkins C
    Behav Brain Res; 1989 Aug; 34(1-2):43-53. PubMed ID: 2765171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhinal cortex lesions and object recognition in rats.
    Mumby DG; Pinel JP
    Behav Neurosci; 1994 Feb; 108(1):11-8. PubMed ID: 8192836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of perirhinal cortex in visual discrimination learning for visual secondary reinforcement in rats.
    Eacott MJ; Norman G; Gaffan EA
    Behav Neurosci; 2003 Dec; 117(6):1318-25. PubMed ID: 14674850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retention deficits produced in monkeys with reversible cold lesions in the prestriate cortex.
    Martin-Elkins CL; George P; Horel JA
    Behav Brain Res; 1989 Apr; 32(3):219-30. PubMed ID: 2713077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lesions of the anterior temporal stem and the performance of delayed match-to-sample and visual discriminations in monkeys.
    Cirillo RA; Horel JA; George PJ
    Behav Brain Res; 1989 Aug; 34(1-2):55-69. PubMed ID: 2765172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The primate temporal pole: its putative role in object recognition and memory.
    Nakamura K; Kubota K
    Behav Brain Res; 1996 May; 77(1-2):53-77. PubMed ID: 8762159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.