These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 9189630)

  • 41. Unraveling the science of tooth enamel.
    Bonett JB
    Penn Dent J (Phila); 2005; ():6-9. PubMed ID: 16173233
    [No Abstract]   [Full Text] [Related]  

  • 42. Dental enamel formation and its impact on clinical dentistry.
    Simmer JP; Hu JC
    J Dent Educ; 2001 Sep; 65(9):896-905. PubMed ID: 11569606
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bioactive porous titanium: an alternative to surgical implants.
    de Medeiros WS; de Oliveira MV; Pereira LC; de Andrade MC
    Artif Organs; 2008 Apr; 32(4):277-82. PubMed ID: 18370941
    [TBL] [Abstract][Full Text] [Related]  

  • 44. How do enamelysin and kallikrein 4 process the 32-kDa enamelin?
    Yamakoshi Y; Hu JC; Fukae M; Yamakoshi F; Simmer JP
    Eur J Oral Sci; 2006 May; 114 Suppl 1():45-51; discussion 93-5, 379-80. PubMed ID: 16674662
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The small bovine amelogenin LRAP fails to rescue the amelogenin null phenotype.
    Chen E; Yuan ZA; Wright JT; Hong SP; Li Y; Collier PM; Hall B; D'Angelo M; Decker S; Piddington R; Abrams WR; Kulkarni AB; Gibson CW
    Calcif Tissue Int; 2003 Nov; 73(5):487-95. PubMed ID: 12958690
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development of amelogenin-chitosan hydrogel for in vitro enamel regrowth with a dense interface.
    Ruan Q; Moradian-Oldak J
    J Vis Exp; 2014 Jul; (89):. PubMed ID: 25046057
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mapping the spatial and temporal progression of human dental enamel biomineralization using synchrotron X-ray diffraction.
    Simmons LM; Montgomery J; Beaumont J; Davis GR; Al-Jawad M
    Arch Oral Biol; 2013 Nov; 58(11):1726-34. PubMed ID: 24112740
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biomimetic mineralisation systems for in situ enamel restoration inspired by amelogenesis.
    Wang J; Liu Z; Ren B; Wang Q; Wu J; Yang N; Sui X; Li L; Li M; Zhang X; Li X; Wang B
    J Mater Sci Mater Med; 2021 Aug; 32(9):115. PubMed ID: 34455518
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The growth of calcium phosphates on natural enamel.
    Tomazic B; Tomson M; Nancollas GH
    Calcif Tissue Res; 1976 Mar; 19(4):263-71. PubMed ID: 1252969
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enamel-like tissue regeneration by using biomimetic enamel matrix proteins.
    Fang Z; Guo M; Zhou Q; Li Q; Wong HM; Cao CY
    Int J Biol Macromol; 2021 Jul; 183():2131-2141. PubMed ID: 34111481
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The origin and evolution of enamel mineralization genes.
    Sire JY; Davit-Béal T; Delgado S; Gu X
    Cells Tissues Organs; 2007; 186(1):25-48. PubMed ID: 17627117
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Voyage to the land of developmental enamel mineralization.
    Aoba T
    J Dent Res; 1999 Nov; 78(11):1673-6. PubMed ID: 10576161
    [No Abstract]   [Full Text] [Related]  

  • 53. Morphogenetic activity of silica and bio-silica on the expression of genes controlling biomineralization using SaOS-2 cells.
    Müller WE; Boreiko A; Wang X; Krasko A; Geurtsen W; Custódio MR; Winkler T; Lukić-Bilela L; Link T; Schröder HC
    Calcif Tissue Int; 2007 Nov; 81(5):382-93. PubMed ID: 17957327
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Amelogenin-chitosan matrix for human enamel regrowth: effects of viscosity and supersaturation degree.
    Ruan Q; Siddiqah N; Li X; Nutt S; Moradian-Oldak J
    Connect Tissue Res; 2014 Aug; 55 Suppl 1(0 1):150-4. PubMed ID: 25158201
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Atomic-scale compositional mapping reveals Mg-rich amorphous calcium phosphate in human dental enamel.
    La Fontaine A; Zavgorodniy A; Liu H; Zheng R; Swain M; Cairney J
    Sci Adv; 2016 Sep; 2(9):e1601145. PubMed ID: 27617291
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Biomimetics of crystal texture in dental enamel prism by self-assembly oligopeptide].
    Wang L; Bai W; Feng HL; Jia XR
    Beijing Da Xue Xue Bao Yi Xue Ban; 2007 Feb; 39(1):46-9. PubMed ID: 17304326
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Control of crystal growth during enamel maturation.
    Robinson C; Kirkham J; Stonehouse NJ; Shore RC
    Connect Tissue Res; 1989; 22(1-4):139-45. PubMed ID: 2598665
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Epitaxial overgrowth of apatite crystals on the thin-ribbon precursor at early stages of porcine enamel mineralization.
    Miake Y; Shimoda S; Fukae M; Aoba T
    Calcif Tissue Int; 1993 Oct; 53(4):249-56. PubMed ID: 8275353
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tuft protein: protein cross-linking in enamel development.
    Robinson C; Hudson J
    Eur J Oral Sci; 2011 Dec; 119 Suppl 1():50-4. PubMed ID: 22243226
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biomineralization: new directions in crystal science.
    Heywood BR
    Microsc Res Tech; 1994 Apr; 27(5):376-88. PubMed ID: 8018990
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.