These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 9190047)
1. The pattern of sensory discharge can determine the motor response in young Xenopus tadpoles. Soffe SR J Comp Physiol A; 1997 Jun; 180(6):711-5. PubMed ID: 9190047 [TBL] [Abstract][Full Text] [Related]
2. Two distinct rhythmic motor patterns are driven by common premotor and motor neurons in a simple vertebrate spinal cord. Soffe SR J Neurosci; 1993 Oct; 13(10):4456-69. PubMed ID: 8410198 [TBL] [Abstract][Full Text] [Related]
3. Skin impulse excitation of spinal sensory neurons in developing Xenopus laevis (Daudin) tadpoles. James LJ; Soffe SR J Exp Biol; 2011 Oct; 214(Pt 20):3341-50. PubMed ID: 21957097 [TBL] [Abstract][Full Text] [Related]
4. Sensory physiology, anatomy and immunohistochemistry of Rohon-Beard neurones in embryos of Xenopus laevis. Clarke JD; Hayes BP; Hunt SP; Roberts A J Physiol; 1984 Mar; 348():511-25. PubMed ID: 6201612 [TBL] [Abstract][Full Text] [Related]
5. Roles of ascending inhibition during two rhythmic motor patterns in Xenopus tadpoles. Green CS; Soffe SR J Neurophysiol; 1998 May; 79(5):2316-28. PubMed ID: 9582207 [TBL] [Abstract][Full Text] [Related]
6. Triggering and gating of motor responses by sensory stimulation: behavioural selection in Xenopus embryos. Soffe SR Proc Biol Sci; 1991 Dec; 246(1317):197-203. PubMed ID: 1686085 [TBL] [Abstract][Full Text] [Related]
7. Motor patterns for two distinct rhythmic behaviors evoked by excitatory amino acid agonists in the Xenopus embryo spinal cord. Soffe SR J Neurophysiol; 1996 May; 75(5):1815-25. PubMed ID: 8734582 [TBL] [Abstract][Full Text] [Related]
8. Fictive swimming elicited by electrical stimulation of the midbrain in goldfish. Fetcho JR; Svoboda KR J Neurophysiol; 1993 Aug; 70(2):765-80. PubMed ID: 8410171 [TBL] [Abstract][Full Text] [Related]
9. The modulation of two motor behaviors by persistent sodium currents in Svensson E; Jeffreys H; Li WC J Neurophysiol; 2017 Jul; 118(1):121-130. PubMed ID: 28331009 [TBL] [Abstract][Full Text] [Related]
10. The contribution of the NMDA receptor glycine site to rhythm generation during fictive swimming in Xenopus laevis tadpoles. Issberner JP; Sillar KT Eur J Neurosci; 2007 Nov; 26(9):2556-64. PubMed ID: 17970719 [TBL] [Abstract][Full Text] [Related]
11. A role for potassium currents in the generation of the swimming motor pattern of Xenopus embryos. Wall MJ; Dale N J Neurophysiol; 1994 Jul; 72(1):337-48. PubMed ID: 7965018 [TBL] [Abstract][Full Text] [Related]
12. Sensory activation and role of inhibitory reticulospinal neurons that stop swimming in hatchling frog tadpoles. Perrins R; Walford A; Roberts A J Neurosci; 2002 May; 22(10):4229-40. PubMed ID: 12019340 [TBL] [Abstract][Full Text] [Related]
13. The early development and physiology of Saccomanno V; Love H; Sylvester A; Li WC J Neurophysiol; 2021 Nov; 126(5):1814-1830. PubMed ID: 34705593 [No Abstract] [Full Text] [Related]
14. Spinal inhibitory neurons that modulate cutaneous sensory pathways during locomotion in a simple vertebrate. Li WC; Soffe SR; Roberts A J Neurosci; 2002 Dec; 22(24):10924-34. PubMed ID: 12486187 [TBL] [Abstract][Full Text] [Related]
15. Synaptic potentials in motoneurons during fictive swimming in spinal Xenopus embryos. Roberts A; Dale N; Evoy WH; Soffe SR J Neurophysiol; 1985 Jul; 54(1):1-10. PubMed ID: 2993537 [TBL] [Abstract][Full Text] [Related]
16. Electrically evoked fictive swimming in the low-spinal immobilized turtle. Juranek J; Currie SN J Neurophysiol; 2000 Jan; 83(1):146-55. PubMed ID: 10634861 [TBL] [Abstract][Full Text] [Related]
17. A simple decision to move in response to touch reveals basic sensory memory and mechanisms for variable response times. Koutsikou S; Merrison-Hort R; Buhl E; Ferrario A; Li WC; Borisyuk R; Soffe SR; Roberts A J Physiol; 2018 Dec; 596(24):6219-6233. PubMed ID: 30074236 [TBL] [Abstract][Full Text] [Related]
18. Reconfiguration of a vertebrate motor network: specific neuron recruitment and context-dependent synaptic plasticity. Li WC; Sautois B; Roberts A; Soffe SR J Neurosci; 2007 Nov; 27(45):12267-76. PubMed ID: 17989292 [TBL] [Abstract][Full Text] [Related]
19. Phase-dependent Modulation of a Cutaneous Sensory Pathway by Glycinergic Inhibition from the Locomotor Rhythm Generator in Xenopus Embryos. Sillar KT; Roberts A Eur J Neurosci; 1992 Oct; 4(11):1022-1034. PubMed ID: 12106408 [TBL] [Abstract][Full Text] [Related]
20. Axon projections of reciprocal inhibitory interneurons in the spinal cord of young Xenopus tadpoles and implications for the pattern of inhibition during swimming and struggling. Yoshida M; Roberts A; Soffe SR J Comp Neurol; 1998 Nov; 400(4):504-18. PubMed ID: 9786411 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]