These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 9190082)

  • 1. Glycosylation of CHO-derived recombinant tPA produced under elevated pCO2.
    Kimura R; Miller WM
    Biotechnol Prog; 1997; 13(3):311-7. PubMed ID: 9190082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperosmotic stress and elevated pCO2 alter monoclonal antibody charge distribution and monosaccharide content.
    Schmelzer AE; Miller WM
    Biotechnol Prog; 2002; 18(2):346-53. PubMed ID: 11934306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selected amino acids protect hybridoma and CHO cells from elevated carbon dioxide and osmolality.
    deZengotita VM; Abston LR; Schmelzer AE; Shaw S; Miller WM
    Biotechnol Bioeng; 2002 Jun; 78(7):741-52. PubMed ID: 12001166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of shear stress on intrinsic CHO culture state and glycosylation of recombinant tissue-type plasminogen activator protein.
    Senger RS; Karim MN
    Biotechnol Prog; 2003; 19(4):1199-209. PubMed ID: 12892482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycosylation variant analysis of recombinant human tissue plasminogen activator produced in urea-cycle-enzyme-expressing Chinese hamster ovary (CHO) cell line.
    Kim HJ; Kim HJ
    J Biosci Bioeng; 2006 Nov; 102(5):447-51. PubMed ID: 17189173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of elevated pCO2 and osmolality on growth of CHO cells and production of antibody-fusion protein B1: a case study.
    Zhu MM; Goyal A; Rank DL; Gupta SK; Vanden Boom T; Lee SS
    Biotechnol Prog; 2005; 21(1):70-7. PubMed ID: 15903242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between tissue plasminogen activator production and specific growth rate in Chinese hamster ovary cells cultured in mannose at low temperature.
    Berrios J; Díaz-Barrera A; Bazán C; Altamirano C
    Biotechnol Lett; 2009 Oct; 31(10):1493-7. PubMed ID: 19547928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of N-linked oligosaccharides of recombinant human tissue kallikrein produced by Chinese hamster ovary cells on microcarrier beads and in serum-free suspension culture.
    Watson E; Shah B; Leiderman L; Hsu YR; Karkare S; Lu HS; Lin FK
    Biotechnol Prog; 1994; 10(1):39-44. PubMed ID: 7764526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of cell culture conditions to control N-glycosylation site-occupancy of recombinant glycoproteins expressed in CHO cells.
    Gawlitzek M; Estacio M; Fürch T; Kiss R
    Biotechnol Bioeng; 2009 Aug; 103(6):1164-75. PubMed ID: 19418565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of amino acid additions on ammonium stressed CHO cells.
    Chen P; Harcum SW
    J Biotechnol; 2005 May; 117(3):277-86. PubMed ID: 15862358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of culture conditions on N-glycolylneuraminic acid (Neu5Gc) content of a recombinant fusion protein produced in CHO cells.
    Borys MC; Dalal NG; Abu-Absi NR; Khattak SF; Jing Y; Xing Z; Li ZJ
    Biotechnol Bioeng; 2010 Apr; 105(6):1048-57. PubMed ID: 20039310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing recombinant glycoprotein sialylation through CMP-sialic acid transporter over expression in Chinese hamster ovary cells.
    Wong NS; Yap MG; Wang DI
    Biotechnol Bioeng; 2006 Apr; 93(5):1005-16. PubMed ID: 16432895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural-network-based identification of tissue-type plasminogen activator protein production and glycosylation in CHO cell culture under shear environment.
    Senger RS; Karim MN
    Biotechnol Prog; 2003; 19(6):1828-36. PubMed ID: 14656163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of fed-batch parameters and harvest time of CHO cell cultures for a glycosylated product with multiple mechanisms of inactivation.
    Senger RS; Karim MN
    Biotechnol Bioeng; 2007 Oct; 98(2):378-90. PubMed ID: 17385745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Appropriate mammalian expression systems for biopharmaceuticals.
    Werner RG; Noé W; Kopp K; Schlüter M
    Arzneimittelforschung; 1998 Aug; 48(8):870-80. PubMed ID: 9748718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of ammonia and glucosamine on the heterogeneity of erythropoietin glycoforms.
    Yang M; Butler M
    Biotechnol Prog; 2002; 18(1):129-38. PubMed ID: 11822911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of ammonium on growth, metabolism, and productivity of a continuous suspension Chinese hamster ovary cell culture.
    Hansen HA; Emborg C
    Biotechnol Prog; 1994; 10(1):121-4. PubMed ID: 7764523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chinese hamster ovary cells with constitutively expressed sialidase antisense RNA produce recombinant DNase in batch culture with increased sialic acid.
    Ferrari J; Gunson J; Lofgren J; Krummen L; Warner TG
    Biotechnol Bioeng; 1998 Dec; 60(5):589-95. PubMed ID: 10099467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene-expression profiles for five key glycosylation genes for galactose-fed CHO cells expressing recombinant IL-4/13 cytokine trap.
    Clark KJ; Griffiths J; Bailey KM; Harcum SW
    Biotechnol Bioeng; 2005 Jun; 90(5):568-77. PubMed ID: 15818560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of site-specific glycosylation in recombinant human follistatin expressed in Chinese hamster ovary cells.
    Hyuga M; Itoh S; Kawasaki N; Ohta M; Ishii A; Hyuga S; Hayakawa T
    Biologicals; 2004 Jun; 32(2):70-7. PubMed ID: 15454184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.