These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 9192069)

  • 21. Mutational study of human phosphohistidine phosphatase: effect on enzymatic activity.
    Ma R; Kanders E; Sundh UB; Geng M; Ek P; Zetterqvist O; Li JP
    Biochem Biophys Res Commun; 2005 Nov; 337(3):887-91. PubMed ID: 16219293
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural analysis of the PP2C phosphatase tPphA from Thermosynechococcus elongatus: a flexible flap subdomain controls access to the catalytic site.
    Schlicker C; Fokina O; Kloft N; GrĂ¼ne T; Becker S; Sheldrick GM; Forchhammer K
    J Mol Biol; 2008 Feb; 376(2):570-81. PubMed ID: 18164312
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced binding of RNAP II CTD phosphatase FCP1 to RAP74 following CK2 phosphorylation.
    Abbott KL; Renfrow MB; Chalmers MJ; Nguyen BD; Marshall AG; Legault P; Omichinski JG
    Biochemistry; 2005 Mar; 44(8):2732-45. PubMed ID: 15723518
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure and regulation of MAPK phosphatases.
    Farooq A; Zhou MM
    Cell Signal; 2004 Jul; 16(7):769-79. PubMed ID: 15115656
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicted secondary and supersecondary structure for the serine-threonine-specific protein phosphatase family.
    Jenny TF; Gerloff DL; Cohen MA; Benner SA
    Proteins; 1995 Jan; 21(1):1-10. PubMed ID: 7716164
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation.
    Denu JM; Tanner KG
    Biochemistry; 1998 Apr; 37(16):5633-42. PubMed ID: 9548949
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystal structure of the C-terminal domain of the two-component system transmitter protein nitrogen regulator II (NRII; NtrB), regulator of nitrogen assimilation in Escherichia coli.
    Song Y; Peisach D; Pioszak AA; Xu Z; Ninfa AJ
    Biochemistry; 2004 Jun; 43(21):6670-8. PubMed ID: 15157101
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional characterization of the low-molecular-mass phosphotyrosine-protein phosphatase of Acinetobacter johnsonii.
    Grangeasse C; Doublet P; Vincent C; Vaganay E; Riberty M; Duclos B; Cozzone AJ
    J Mol Biol; 1998 May; 278(2):339-47. PubMed ID: 9571056
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular mechanisms of the protein serine/threonine phosphatases.
    Barford D
    Trends Biochem Sci; 1996 Nov; 21(11):407-12. PubMed ID: 8987393
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Calcineurin: not just a simple protein phosphatase.
    Guerini D
    Biochem Biophys Res Commun; 1997 Jun; 235(2):271-5. PubMed ID: 9199180
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Catalytic activation of mitogen-activated protein (MAP) kinase phosphatase-1 by binding to p38 MAP kinase: critical role of the p38 C-terminal domain in its negative regulation.
    Hutter D; Chen P; Barnes J; Liu Y
    Biochem J; 2000 Nov; 352 Pt 1(Pt 1):155-63. PubMed ID: 11062068
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Trimeric structure of PRL-1 phosphatase reveals an active enzyme conformation and regulation mechanisms.
    Jeong DG; Kim SJ; Kim JH; Son JH; Park MR; Lim SM; Yoon TS; Ryu SE
    J Mol Biol; 2005 Jan; 345(2):401-13. PubMed ID: 15571731
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure of the hematopoietic tyrosine phosphatase (HePTP) catalytic domain: structure of a KIM phosphatase with phosphate bound at the active site.
    Mustelin T; Tautz L; Page R
    J Mol Biol; 2005 Nov; 354(1):150-63. PubMed ID: 16226275
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plant protein phosphatases: What do we know about their mechanism of action?
    Bheri M; Mahiwal S; Sanyal SK; Pandey GK
    FEBS J; 2021 Feb; 288(3):756-785. PubMed ID: 32542989
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal structure of the catalytic subunit of human protein phosphatase 1 and its complex with tungstate.
    Egloff MP; Cohen PT; Reinemer P; Barford D
    J Mol Biol; 1995 Dec; 254(5):942-59. PubMed ID: 7500362
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural basis for recognizing phosphoarginine and evolving residue-specific protein phosphatases in gram-positive bacteria.
    Fuhrmann J; Mierzwa B; Trentini DB; Spiess S; Lehner A; Charpentier E; Clausen T
    Cell Rep; 2013 Jun; 3(6):1832-9. PubMed ID: 23770242
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein serine/threonine phosphatases.
    Villafranca JE; Kissinger CR; Parge HE
    Curr Opin Biotechnol; 1996 Aug; 7(4):397-402. PubMed ID: 8768897
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fluorogenic peptide substrates for serine and threonine phosphatases.
    Xue F; Seto CT
    Org Lett; 2010 May; 12(9):1936-9. PubMed ID: 20359238
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural basis for the preference of the
    Labandera AM; Uhrig RG; Colville K; Moorhead GB; Ng KKS
    Sci Signal; 2018 Apr; 11(524):. PubMed ID: 29615518
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Charged with meaning: the structure and mechanism of phosphoprotein phosphatases.
    Taylor WP; Widlanski TS
    Chem Biol; 1995 Nov; 2(11):713-8. PubMed ID: 9383478
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.