These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 9192070)

  • 21. Glial growth factor and nerve-dependent proliferation in the regeneration blastema of Urodele amphibians.
    Brockes JP; Kintner CR
    Cell; 1986 Apr; 45(2):301-6. PubMed ID: 3698099
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nerve-dependent and -independent events in blastema formation during Xenopus froglet limb regeneration.
    Suzuki M; Satoh A; Ide H; Tamura K
    Dev Biol; 2005 Oct; 286(1):361-75. PubMed ID: 16154125
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stimulation in cell culture of mesenchymal cells of newt limb blastemas by EDGF I or II (basic or acidic FGF).
    Albert P; Boilly B; Courty J; Barritault D
    Cell Differ; 1987 Jun; 21(1):63-8. PubMed ID: 3607885
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Retinoic acid involvement in the reciprocal neurotrophic interactions between newt spinal cord and limb blastemas in vitro.
    Prince DJ; Carlone RL
    Brain Res Dev Brain Res; 2003 Jan; 140(1):67-73. PubMed ID: 12524177
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Growth of human melanocyte cultures supported by 12-O-tetradecanoylphorbol-13-acetate is mediated through protein kinase C activation.
    Arita Y; O'Driscoll KR; Weinstein IB
    Cancer Res; 1992 Aug; 52(16):4514-21. PubMed ID: 1643643
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Retinoic acid-dependent attraction of adult spinal cord axons towards regenerating newt limb blastemas in vitro.
    Dmetrichuk JM; Spencer GE; Carlone RL
    Dev Biol; 2005 May; 281(1):112-20. PubMed ID: 15848393
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nerve-independence of limb regeneration in larval Xenopus laevis is correlated to the level of fgf-2 mRNA expression in limb tissues.
    Cannata SM; Bagni C; Bernardini S; Christen B; Filoni S
    Dev Biol; 2001 Mar; 231(2):436-46. PubMed ID: 11237471
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mitogenic growth factors and nerve dependence of limb regeneration.
    Brockes JP
    Science; 1984 Sep; 225(4668):1280-7. PubMed ID: 6474177
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Growth-dependent subcellular redistribution of protein kinase C in cultured porcine aortic endothelial cells.
    Uratsuji Y; DiCorleto PE
    J Cell Physiol; 1988 Sep; 136(3):431-8. PubMed ID: 3170640
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential down-regulation of protein kinase C subspecies in normal human melanocytes: possible involvement of the zeta subspecies in growth regulation.
    Oka M; Ogita K; Ando H; Kikkawa U; Ichihashi M
    J Invest Dermatol; 1995 Oct; 105(4):567-71. PubMed ID: 7561160
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Subcellular distribution of protein kinase C alpha and betaI in bovine spermatozoa, and their regulation by calcium and phorbol esters.
    Lax Y; Rubinstein S; Breitbart H
    Biol Reprod; 1997 Feb; 56(2):454-9. PubMed ID: 9116146
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of protein kinase C isoenzymes in the growth inhibition caused by bryostatin 1 in human A549 lung and MCF-7 breast carcinoma cells.
    Stanwell C; Gescher A; Bradshaw TD; Pettit GR
    Int J Cancer; 1994 Feb; 56(4):585-92. PubMed ID: 8112895
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein kinase C down-regulation, and not transient activation, correlates with melanocyte growth.
    Brooks G; Wilson RE; Dooley TP; Goss MW; Hart IR
    Cancer Res; 1991 Jun; 51(12):3281-8. PubMed ID: 2040003
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Examination of fibronectin distribution and its sources in the regenerating newt limb by immunocytochemistry and in situ hybridization.
    Nace JD; Tassava RA
    Dev Dyn; 1995 Feb; 202(2):153-64. PubMed ID: 7734733
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of the cell cycle at the G2/M boundary in metastatic melanoma cells by 12-O-tetradecanoyl phorbol-13-acetate (TPA) by blocking p34cdc2 kinase activity.
    Arita Y; Buffolino P; Coppock DL
    Exp Cell Res; 1998 Aug; 242(2):381-90. PubMed ID: 9683525
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein kinase C activation allows pulmonary artery smooth muscle cells to proliferate to hypoxia.
    Dempsey EC; McMurtry IF; O'Brien RF
    Am J Physiol; 1991 Feb; 260(2 Pt 1):L136-45. PubMed ID: 1996657
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of benzoyl peroxide on protein kinase C in cultured human epidermal keratinocytes.
    Matsui MS; Mintz E; DeLeo VA
    Skin Pharmacol; 1995; 8(3):130-8. PubMed ID: 7632434
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Directed axonal growth towards axolotl limb blastemas in vitro.
    Tonge DA; Leclere PG
    Neuroscience; 2000; 100(1):201-11. PubMed ID: 10996470
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative estimation of HRP-labeled sensory and motor neurons during nerve-dependent and nerve-independent periods of urodele limb regeneration.
    Koussoulakos S; Margaritis LH; Mitashov V; Anton HJ
    Izv Akad Nauk Ser Biol; 2003; (4):405-15. PubMed ID: 12942746
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Newts can normalize duplicated proximal-distal disorder during limb regeneration.
    Koriyama K; Sakagami R; Myouga A; Hayashi T; Takeuchi T
    Dev Dyn; 2018 Dec; 247(12):1276-1285. PubMed ID: 30358924
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.