These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 9192298)

  • 1. Simultaneous measurement of intracellular Ca2+ and asynchronous transmitter release from the same crayfish bouton.
    Ravin R; Spira ME; Parnas H; Parnas I
    J Physiol; 1997 Jun; 501 ( Pt 2)(Pt 2):251-62. PubMed ID: 9192298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous measurement of evoked release and [Ca2+]i in a crayfish release bouton reveals high affinity of release to Ca2+.
    Ravin R; Parnas H; Spira ME; Volfovsky N; Parnas I
    J Neurophysiol; 1999 Feb; 81(2):634-42. PubMed ID: 10036266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Partial uncoupling of neurotransmitter release from [Ca2+]i by membrane hyperpolarization.
    Ravin R; Parnas H; Spira ME; Parnas I
    J Neurophysiol; 1999 Jun; 81(6):3044-53. PubMed ID: 10368419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Presynaptic calcium dynamics and transmitter release evoked by single action potentials at mammalian central synapses.
    Sinha SR; Wu LG; Saggau P
    Biophys J; 1997 Feb; 72(2 Pt 1):637-51. PubMed ID: 9017193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intraterminal Ca2+ concentration and asynchronous transmitter release at single GABAergic boutons in rat collicular cultures.
    Kirischuk S; Grantyn R
    J Physiol; 2003 May; 548(Pt 3):753-64. PubMed ID: 12640015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synaptic structural complexity as a factor enhancing probability of calcium-mediated transmitter release.
    Cooper RL; Winslow JL; Govind CK; Atwood HL
    J Neurophysiol; 1996 Jun; 75(6):2451-66. PubMed ID: 8793756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium-dependent and calcium-independent enhancement of transmitter release at the crayfish neuromuscular junction studied with fura-2 imaging.
    Delaney KR; Tank DW
    Ann N Y Acad Sci; 1991; 635():452-4. PubMed ID: 1683756
    [No Abstract]   [Full Text] [Related]  

  • 8. Different VAMP/synaptobrevin complexes for spontaneous and evoked transmitter release at the crayfish neuromuscular junction.
    Hua SY; Raciborska DA; Trimble WS; Charlton MP
    J Neurophysiol; 1998 Dec; 80(6):3233-46. PubMed ID: 9862918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. alpha-latrocrustatoxin increases neurotransmitter release by activating a calcium influx pathway at crayfish neuromuscular junction.
    Elrick DB; Charlton MP
    J Neurophysiol; 1999 Dec; 82(6):3550-62. PubMed ID: 10601481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Action potentials must admit calcium to evoke transmitter release.
    Mulkey RM; Zucker RS
    Nature; 1991 Mar; 350(6314):153-5. PubMed ID: 1672444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium sensitivity of neurotransmitter release differs at phasic and tonic synapses.
    Millar AG; Zucker RS; Ellis-Davies GC; Charlton MP; Atwood HL
    J Neurosci; 2005 Mar; 25(12):3113-25. PubMed ID: 15788768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial Ca2+ uptake prevents desynchronization of quantal release and minimizes depletion during repetitive stimulation of mouse motor nerve terminals.
    David G; Barrett EF
    J Physiol; 2003 Apr; 548(Pt 2):425-38. PubMed ID: 12588898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visible evidence for differences in synaptic effectiveness with activity-dependent vesicular uptake and release of FM1-43.
    Quigley PA; Msghina M; Govind CK; Atwood HL
    J Neurophysiol; 1999 Jan; 81(1):356-70. PubMed ID: 9914295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dual-Ca2+-sensor model for neurotransmitter release in a central synapse.
    Sun J; Pang ZP; Qin D; Fahim AT; Adachi R; Südhof TC
    Nature; 2007 Nov; 450(7170):676-82. PubMed ID: 18046404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two components of transmitter release at a central synapse.
    Goda Y; Stevens CF
    Proc Natl Acad Sci U S A; 1994 Dec; 91(26):12942-6. PubMed ID: 7809151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulation-induced changes in [Ca2+] in lizard motor nerve terminals.
    David G; Barrett JN; Barrett EF
    J Physiol; 1997 Oct; 504 ( Pt 1)(Pt 1):83-96. PubMed ID: 9350620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of available vesicles and release kinetics at the inhibitor of the crayfish neuromuscular junction.
    Lin JW; Fu Q
    Neuroscience; 2005; 130(4):889-95. PubMed ID: 15652987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium released by photolysis of DM-nitrophen triggers transmitter release at the crayfish neuromuscular junction.
    Mulkey RM; Zucker RS
    J Physiol; 1993 Mar; 462():243-60. PubMed ID: 8101226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurotransmitter release and its facilitation in crayfish muscle. V. Basis for synapse differentiation of the fast and slow type in one axon.
    Parnas I; Parnas H; Dudel J
    Pflugers Arch; 1982 Dec; 395(4):261-70. PubMed ID: 6130509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium currents, transmitter release and facilitation of release at voltage-clamped crayfish nerve terminals.
    Wright SN; Brodwick MS; Bittner GD
    J Physiol; 1996 Oct; 496 ( Pt 2)(Pt 2):363-78. PubMed ID: 8910222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.