These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 9192624)

  • 41. Crystallization and preliminary X-ray analysis of the mRNA-binding domain of elongation factor SelB from Escherichia coli in complex with RNA.
    Soler N; Fourmy D; Yoshizawa S
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2007 May; 63(Pt 5):419-21. PubMed ID: 17565186
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A dynamic competition between release factor 2 and the tRNA(Sec) decoding UGA at the recoding site of Escherichia coli formate dehydrogenase H.
    Mansell JB; Guévremont D; Poole ES; Tate WP
    EMBO J; 2001 Dec; 20(24):7284-93. PubMed ID: 11743004
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification and characterisation of the selenocysteine-specific translation factor SelB from the archaeon Methanococcus jannaschii.
    Rother M; Wilting R; Commans S; Böck A
    J Mol Biol; 2000 Jun; 299(2):351-8. PubMed ID: 10860743
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nitrate-inducible formate dehydrogenase in Escherichia coli K-12. II. Evidence that a mRNA stem-loop structure is essential for decoding opal (UGA) as selenocysteine.
    Berg BL; Baron C; Stewart V
    J Biol Chem; 1991 Nov; 266(33):22386-91. PubMed ID: 1834670
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The nature of the minimal 'selenocysteine insertion sequence' (SECIS) in Escherichia coli.
    Liu Z; Reches M; Groisman I; Engelberg-Kulka H
    Nucleic Acids Res; 1998 Feb; 26(4):896-902. PubMed ID: 9461445
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nucleotide sequence and expression of the selenocysteine-containing polypeptide of formate dehydrogenase (formate-hydrogen-lyase-linked) from Escherichia coli.
    Zinoni F; Birkmann A; Stadtman TC; Böck A
    Proc Natl Acad Sci U S A; 1986 Jul; 83(13):4650-4. PubMed ID: 2941757
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Purification and biochemical characterization of SELB, a translation factor involved in selenoprotein synthesis.
    Forchhammer K; Rücknagel KP; Böck A
    J Biol Chem; 1990 Jun; 265(16):9346-50. PubMed ID: 2140572
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A synthetic tRNA for EF-Tu mediated selenocysteine incorporation in vivo and in vitro.
    Miller C; Bröcker MJ; Prat L; Ip K; Chirathivat N; Feiock A; Veszprémi M; Söll D
    FEBS Lett; 2015 Aug; 589(17):2194-9. PubMed ID: 26160755
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The function of SECIS RNA in translational control of gene expression in Escherichia coli.
    Thanbichler M; Böck A
    EMBO J; 2002 Dec; 21(24):6925-34. PubMed ID: 12486013
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Thermodynamic and kinetic framework of selenocysteyl-tRNASec recognition by elongation factor SelB.
    Paleskava A; Konevega AL; Rodnina MV
    J Biol Chem; 2010 Jan; 285(5):3014-20. PubMed ID: 19940162
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structural model for the selenocysteine-specific elongation factor SelB.
    Hilgenfeld R; Böck A; Wilting R
    Biochimie; 1996; 78(11-12):971-8. PubMed ID: 9150874
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Functional analysis of prokaryotic SELB proteins.
    Thanbichler M; Böck A
    Biofactors; 2001; 14(1-4):53-9. PubMed ID: 11568440
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High-level expression in Escherichia coli of selenocysteine-containing rat thioredoxin reductase utilizing gene fusions with engineered bacterial-type SECIS elements and co-expression with the selA, selB and selC genes.
    Arnér ES; Sarioglu H; Lottspeich F; Holmgren A; Böck A
    J Mol Biol; 1999 Oct; 292(5):1003-16. PubMed ID: 10512699
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inactivation of the selB gene in Methanococcus maripaludis: effect on synthesis of selenoproteins and their sulfur-containing homologs.
    Rother M; Mathes I; Lottspeich F; Böck A
    J Bacteriol; 2003 Jan; 185(1):107-14. PubMed ID: 12486046
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization of mSelB, a novel mammalian elongation factor for selenoprotein translation.
    Fagegaltier D; Hubert N; Yamada K; Mizutani T; Carbon P; Krol A
    EMBO J; 2000 Sep; 19(17):4796-805. PubMed ID: 10970870
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The pathway to GTPase activation of elongation factor SelB on the ribosome.
    Fischer N; Neumann P; Bock LV; Maracci C; Wang Z; Paleskava A; Konevega AL; Schröder GF; Grubmüller H; Ficner R; Rodnina MV; Stark H
    Nature; 2016 Dec; 540(7631):80-85. PubMed ID: 27842381
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Overproduction of a selenocysteine-containing polypeptide in Escherichia coli: the fdhF gene product.
    Chen GT; Axley MJ; Hacia J; Inouye M
    Mol Microbiol; 1992 Mar; 6(6):781-5. PubMed ID: 1533438
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The function of selenocysteine synthase and SELB in the synthesis and incorporation of selenocysteine.
    Forchhammer K; Boesmiller K; Böck A
    Biochimie; 1991 Dec; 73(12):1481-6. PubMed ID: 1839607
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An RNA-binding protein recognizes a mammalian selenocysteine insertion sequence element required for cotranslational incorporation of selenocysteine.
    Lesoon A; Mehta A; Singh R; Chisolm GM; Driscoll DM
    Mol Cell Biol; 1997 Apr; 17(4):1977-85. PubMed ID: 9121445
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sequences in the 3'-untranslated region of the human cellular glutathione peroxidase gene are necessary and sufficient for selenocysteine incorporation at the UGA codon.
    Shen Q; Chu FF; Newburger PE
    J Biol Chem; 1993 May; 268(15):11463-9. PubMed ID: 7684384
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.