These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 9192692)

  • 1. Relationships between enzymatic flux capacities and metabolic flux rates: nonequilibrium reactions in muscle glycolysis.
    Suarez RK; Staples JF; Lighton JR; West TG
    Proc Natl Acad Sci U S A; 1997 Jun; 94(13):7065-9. PubMed ID: 9192692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The activities of phosphorylase, hexokinase, phosphofructokinase, lactate dehydrogenase and the glycerol 3-phosphate dehydrogenases in muscles from vertebrates and invertebrates.
    Crabtree B; Newsholme EA
    Biochem J; 1972 Jan; 126(1):49-58. PubMed ID: 4342385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy metabolism, enzymatic flux capacities, and metabolic flux rates in flying honeybees.
    Suarez RK; Lighton JR; Joos B; Roberts SP; Harrison JF
    Proc Natl Acad Sci U S A; 1996 Oct; 93(22):12616-20. PubMed ID: 8901631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flight muscle enzymes and metabolic flux rates during hovering flight of the nectar bat, Glossophaga soricina: further evidence of convergence with hummingbirds.
    Suarez RK; Welch KC; Hanna SK; Herrera M LG
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Jun; 153(2):136-40. PubMed ID: 19535035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy metabolism during insect flight: biochemical design and physiological performance.
    Suarez RK
    Physiol Biochem Zool; 2000; 73(6):765-71. PubMed ID: 11121349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Functional organization of the enzyme systems of glycolysis in muscle and nerve tissue of cephalopod molluscs and lower fishes].
    Verzhbinskaia NA
    Zh Evol Biokhim Fiziol; 1973; 8(3):260-8. PubMed ID: 4271688
    [No Abstract]   [Full Text] [Related]  

  • 7. Allometric scaling of flight energetics in orchid bees: evolution of flux capacities and flux rates.
    Darveau CA; Hochachka PW; Roubik DW; Suarez RK
    J Exp Biol; 2005 Sep; 208(Pt 18):3593-602. PubMed ID: 16155230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carnitine concentration in relation to enzyme activities and substrate utilization in human skeletal muscles.
    Cederblad G; Bylund AC; Holm J; Scherstén T
    Scand J Clin Lab Invest; 1976 Oct; 36(6):547-52. PubMed ID: 137518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of glucose and glycogen as fuels for muscle.
    Newsholme EA; Zammit VA; Crabtree B
    Biochem Soc Trans; 1978; 6(3):512-20. PubMed ID: 149682
    [No Abstract]   [Full Text] [Related]  

  • 10. The effects of calcium ions on the activities of trehalase, hexokinase, phosphofructokinase, fructose diphosphatase and pyruvate kinase from various muscles.
    Vaughan H; Thornton SD; Newsholme EA
    Biochem J; 1973 Mar; 132(3):527-35. PubMed ID: 4353381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of enzyme activities as indices of maximum rates of fuel utilization.
    Newsholme EA; Crabtree B; Zammit VA
    Ciba Found Symp; 1979; (73):245-58. PubMed ID: 261674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Four Key Steps Control Glycolytic Flux in Mammalian Cells.
    Tanner LB; Goglia AG; Wei MH; Sehgal T; Parsons LR; Park JO; White E; Toettcher JE; Rabinowitz JD
    Cell Syst; 2018 Jul; 7(1):49-62.e8. PubMed ID: 29960885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maximum activities and effects of fructose bisphosphate on pyruvate kinase from muscles of vertebrates and invertebrates in relation to the control of glycolysis.
    Zammit VA; Beis I; Newsholme EA
    Biochem J; 1978 Sep; 174(3):989-98. PubMed ID: 215127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determining and understanding the control of glycolysis in fast-growth tumor cells. Flux control by an over-expressed but strongly product-inhibited hexokinase.
    Marín-Hernández A; Rodríguez-Enríquez S; Vital-González PA; Flores-Rodríguez FL; Macías-Silva M; Sosa-Garrocho M; Moreno-Sánchez R
    FEBS J; 2006 May; 273(9):1975-88. PubMed ID: 16640561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytosolic organization of carbohydrate-metabolism enzymes in cross-striated muscle.
    Pette D
    Biochem Soc Trans; 1978; 6(1):9-11. PubMed ID: 147789
    [No Abstract]   [Full Text] [Related]  

  • 16. Seasonal acclimatization in American goldfinches: the role of the pectoralis muscle.
    Yacoe ME; Dawson WR
    Am J Physiol; 1983 Aug; 245(2):R265-71. PubMed ID: 6224430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycolytic enzymes in different types of skeletal muscle: adaptation to exercise.
    Baldwin KM; Winder WW; Terjung RL; Holloszy JO
    Am J Physiol; 1973 Oct; 225(4):962-6. PubMed ID: 4270315
    [No Abstract]   [Full Text] [Related]  

  • 18. Metabolic differentiation of homologous leg muscles of two aquatic birds at the level of enzymatic organization.
    Deshpande BR; Kallapur VL; Venkatesh K
    Arch Int Physiol Biochim; 1984 Aug; 92(2):65-72. PubMed ID: 6208868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic consequences of diving in animals and man.
    Hochachka PW; Storey KB
    Science; 1975 Feb; 187(4177):613-21. PubMed ID: 163485
    [No Abstract]   [Full Text] [Related]  

  • 20. Roles of hierarchical and metabolic regulation in the allometric scaling of metabolism in Panamanian orchid bees.
    Suarez RK; Darveau CA; Hochachka PW
    J Exp Biol; 2005 Sep; 208(Pt 18):3603-7. PubMed ID: 16155231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.