These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

512 related articles for article (PubMed ID: 9192836)

  • 1. Increased facilitated transport of dehydroascorbic acid without changes in sodium-dependent ascorbate transport in human melanoma cells.
    Spielholz C; Golde DW; Houghton AN; Nualart F; Vera JC
    Cancer Res; 1997 Jun; 57(12):2529-37. PubMed ID: 9192836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vitamin C uptake and recycling among normal and tumor cells from the central nervous system.
    Astuya A; Caprile T; Castro M; Salazar K; García Mde L; Reinicke K; Rodríguez F; Vera JC; Millán C; Ulloa V; Low M; Martínez F; Nualart F
    J Neurosci Res; 2005 Jan 1-15; 79(1-2):146-56. PubMed ID: 15578707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stromal cell oxidation: a mechanism by which tumors obtain vitamin C.
    Agus DB; Vera JC; Golde DW
    Cancer Res; 1999 Sep; 59(18):4555-8. PubMed ID: 10493506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mammalian facilitative hexose transporters mediate the transport of dehydroascorbic acid.
    Vera JC; Rivas CI; Fischbarg J; Golde DW
    Nature; 1993 Jul; 364(6432):79-82. PubMed ID: 8316303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential effects and transport kinetics of ascorbate derivatives in leukemic cell lines.
    Koh WS; Lee SJ; Lee H; Park C; Park MH; Kim WS; Yoon SS; Park K; Hong SI; Chung MH; Park CH
    Anticancer Res; 1998; 18(4A):2487-93. PubMed ID: 9703897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct mechanisms of transport of ascorbic acid and dehydroascorbic acid in intestinal epithelial cells (IEC-6).
    Fujita I; Akagi Y; Hirano J; Nakanishi T; Itoh N; Muto N; Tanaka K
    Res Commun Mol Pathol Pharmacol; 2000; 107(3-4):219-31. PubMed ID: 11484876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accumulation of intracellular ascorbate from dehydroascorbic acid by astrocytes is decreased after oxidative stress and restored by propofol.
    Daskalopoulos R; Korcok J; Tao L; Wilson JX
    Glia; 2002 Aug; 39(2):124-32. PubMed ID: 12112364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dehydroascorbic acid uptake and intracellular ascorbic acid accumulation in cultured Müller glial cells (TR-MUL).
    Hosoya K; Nakamura G; Akanuma S; Tomi M; Tachikawa M
    Neurochem Int; 2008 Jun; 52(7):1351-7. PubMed ID: 18353508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of respiratory burst and uptake of dehydroascorbic acid in differentiated HL-60 cells.
    Laggner H; Goldenberg H
    Biochem J; 2000 Jan; 345 Pt 2(Pt 2):195-200. PubMed ID: 10620494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facilitated glucose and dehydroascorbate transport in plant mitochondria.
    Szarka A; Horemans N; Bánhegyi G; Asard H
    Arch Biochem Biophys; 2004 Aug; 428(1):73-80. PubMed ID: 15234271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperglycemia inhibits the uptake of dehydroascorbate in tubular epithelial cell.
    Chen L; Jia RH; Qiu CJ; Ding G
    Am J Nephrol; 2005; 25(5):459-65. PubMed ID: 16118484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efflux of hepatic ascorbate: a potential contributor to the maintenance of plasma vitamin C.
    Upston JM; Karjalainen A; Bygrave FL; Stocker R
    Biochem J; 1999 Aug; 342 ( Pt 1)(Pt 1):49-56. PubMed ID: 10432299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hexose transporter expression and function in mammalian spermatozoa: cellular localization and transport of hexoses and vitamin C.
    Angulo C; Rauch MC; Droppelmann A; Reyes AM; Slebe JC; Delgado-López F; Guaiquil VH; Vera JC; Concha II
    J Cell Biochem; 1998 Nov; 71(2):189-203. PubMed ID: 9779818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular pathways for transport and efflux of ascorbate and dehydroascorbate.
    Corti A; Casini AF; Pompella A
    Arch Biochem Biophys; 2010 Aug; 500(2):107-15. PubMed ID: 20494648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of vitamin C transport.
    Wilson JX
    Annu Rev Nutr; 2005; 25():105-25. PubMed ID: 16011461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport and intracellular accumulation of vitamin C in endothelial cells: relevance to collagen synthesis.
    May JM; Qu ZC
    Arch Biochem Biophys; 2005 Feb; 434(1):178-86. PubMed ID: 15629121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vitamin C crosses the blood-brain barrier in the oxidized form through the glucose transporters.
    Agus DB; Gambhir SS; Pardridge WM; Spielholz C; Baselga J; Vera JC; Golde DW
    J Clin Invest; 1997 Dec; 100(11):2842-8. PubMed ID: 9389750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies with low micromolar levels of ascorbic and dehydroascorbic acid fail to unravel a preferential route for vitamin C uptake and accumulation in U937 cells.
    Azzolini C; Fiorani M; Guidarelli A; Cantoni O
    Br J Nutr; 2012 Mar; 107(5):691-6. PubMed ID: 21794197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular vitamin C accumulation in the presence of copper.
    Kuo SM; Tan D; Boyer JC
    Biol Trace Elem Res; 2004 Aug; 100(2):125-36. PubMed ID: 15326362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accumulation of vitamin C (ascorbate) and its oxidized metabolite dehydroascorbic acid occurs by separate mechanisms.
    Welch RW; Wang Y; Crossman A; Park JB; Kirk KL; Levine M
    J Biol Chem; 1995 May; 270(21):12584-92. PubMed ID: 7759506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.