BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

514 related articles for article (PubMed ID: 9192836)

  • 1. Increased facilitated transport of dehydroascorbic acid without changes in sodium-dependent ascorbate transport in human melanoma cells.
    Spielholz C; Golde DW; Houghton AN; Nualart F; Vera JC
    Cancer Res; 1997 Jun; 57(12):2529-37. PubMed ID: 9192836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vitamin C uptake and recycling among normal and tumor cells from the central nervous system.
    Astuya A; Caprile T; Castro M; Salazar K; García Mde L; Reinicke K; Rodríguez F; Vera JC; Millán C; Ulloa V; Low M; Martínez F; Nualart F
    J Neurosci Res; 2005 Jan 1-15; 79(1-2):146-56. PubMed ID: 15578707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stromal cell oxidation: a mechanism by which tumors obtain vitamin C.
    Agus DB; Vera JC; Golde DW
    Cancer Res; 1999 Sep; 59(18):4555-8. PubMed ID: 10493506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mammalian facilitative hexose transporters mediate the transport of dehydroascorbic acid.
    Vera JC; Rivas CI; Fischbarg J; Golde DW
    Nature; 1993 Jul; 364(6432):79-82. PubMed ID: 8316303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential effects and transport kinetics of ascorbate derivatives in leukemic cell lines.
    Koh WS; Lee SJ; Lee H; Park C; Park MH; Kim WS; Yoon SS; Park K; Hong SI; Chung MH; Park CH
    Anticancer Res; 1998; 18(4A):2487-93. PubMed ID: 9703897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct mechanisms of transport of ascorbic acid and dehydroascorbic acid in intestinal epithelial cells (IEC-6).
    Fujita I; Akagi Y; Hirano J; Nakanishi T; Itoh N; Muto N; Tanaka K
    Res Commun Mol Pathol Pharmacol; 2000; 107(3-4):219-31. PubMed ID: 11484876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accumulation of intracellular ascorbate from dehydroascorbic acid by astrocytes is decreased after oxidative stress and restored by propofol.
    Daskalopoulos R; Korcok J; Tao L; Wilson JX
    Glia; 2002 Aug; 39(2):124-32. PubMed ID: 12112364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dehydroascorbic acid uptake and intracellular ascorbic acid accumulation in cultured Müller glial cells (TR-MUL).
    Hosoya K; Nakamura G; Akanuma S; Tomi M; Tachikawa M
    Neurochem Int; 2008 Jun; 52(7):1351-7. PubMed ID: 18353508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of respiratory burst and uptake of dehydroascorbic acid in differentiated HL-60 cells.
    Laggner H; Goldenberg H
    Biochem J; 2000 Jan; 345 Pt 2(Pt 2):195-200. PubMed ID: 10620494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facilitated glucose and dehydroascorbate transport in plant mitochondria.
    Szarka A; Horemans N; Bánhegyi G; Asard H
    Arch Biochem Biophys; 2004 Aug; 428(1):73-80. PubMed ID: 15234271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperglycemia inhibits the uptake of dehydroascorbate in tubular epithelial cell.
    Chen L; Jia RH; Qiu CJ; Ding G
    Am J Nephrol; 2005; 25(5):459-65. PubMed ID: 16118484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efflux of hepatic ascorbate: a potential contributor to the maintenance of plasma vitamin C.
    Upston JM; Karjalainen A; Bygrave FL; Stocker R
    Biochem J; 1999 Aug; 342 ( Pt 1)(Pt 1):49-56. PubMed ID: 10432299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hexose transporter expression and function in mammalian spermatozoa: cellular localization and transport of hexoses and vitamin C.
    Angulo C; Rauch MC; Droppelmann A; Reyes AM; Slebe JC; Delgado-López F; Guaiquil VH; Vera JC; Concha II
    J Cell Biochem; 1998 Nov; 71(2):189-203. PubMed ID: 9779818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular pathways for transport and efflux of ascorbate and dehydroascorbate.
    Corti A; Casini AF; Pompella A
    Arch Biochem Biophys; 2010 Aug; 500(2):107-15. PubMed ID: 20494648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of vitamin C transport.
    Wilson JX
    Annu Rev Nutr; 2005; 25():105-25. PubMed ID: 16011461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport and intracellular accumulation of vitamin C in endothelial cells: relevance to collagen synthesis.
    May JM; Qu ZC
    Arch Biochem Biophys; 2005 Feb; 434(1):178-86. PubMed ID: 15629121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vitamin C crosses the blood-brain barrier in the oxidized form through the glucose transporters.
    Agus DB; Gambhir SS; Pardridge WM; Spielholz C; Baselga J; Vera JC; Golde DW
    J Clin Invest; 1997 Dec; 100(11):2842-8. PubMed ID: 9389750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies with low micromolar levels of ascorbic and dehydroascorbic acid fail to unravel a preferential route for vitamin C uptake and accumulation in U937 cells.
    Azzolini C; Fiorani M; Guidarelli A; Cantoni O
    Br J Nutr; 2012 Mar; 107(5):691-6. PubMed ID: 21794197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular vitamin C accumulation in the presence of copper.
    Kuo SM; Tan D; Boyer JC
    Biol Trace Elem Res; 2004 Aug; 100(2):125-36. PubMed ID: 15326362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accumulation of vitamin C (ascorbate) and its oxidized metabolite dehydroascorbic acid occurs by separate mechanisms.
    Welch RW; Wang Y; Crossman A; Park JB; Kirk KL; Levine M
    J Biol Chem; 1995 May; 270(21):12584-92. PubMed ID: 7759506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.