These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 9193045)

  • 1. Changes in evoked otoacoustic emissions in the guinea pig after pure-tone acoustic overstimulation.
    Ueda H; Tsuge H; Hattori T
    J Acoust Soc Am; 1997 Jun; 101(6):3577-82. PubMed ID: 9193045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Do click-evoked otoacoustic emissions have frequency specificity?
    Ueda H
    J Acoust Soc Am; 1999 Jan; 105(1):306-10. PubMed ID: 9921657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term stability between click-evoked otoacoustic emissions and distortion product otoacoustic emissions in guinea pigs: A comparison.
    Hoshino M; Ueda H; Nakata S
    ORL J Otorhinolaryngol Relat Spec; 1999; 61(4):175-80. PubMed ID: 10450050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tone-burst and click-evoked otoacoustic emissions in subjects with hearing loss above 0.25, 0.5, and 1 kHz.
    Jedrzejczak WW; Kochanek K; Trzaskowski B; Pilka E; Skarzynski PH; Skarzynski H
    Ear Hear; 2012; 33(6):757-67. PubMed ID: 22710662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fine alterations of distortion-product otoacoustic emissions after moderate acoustic overexposure in guinea pigs.
    Kossowski M; Mom T; Guitton M; Poncet JL; Bonfils P; Avan P
    Audiology; 2001; 40(3):113-22. PubMed ID: 11465293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-frequency otoacoustic emissions in schoolchildren measured by two commercial devices.
    Jedrzejczak WW; Piotrowska A; Kochanek K; Sliwa L; Skarzynski H
    Int J Pediatr Otorhinolaryngol; 2013 Oct; 77(10):1724-8. PubMed ID: 23972827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Otoacoustic emissions evoked by electrical stimulation].
    Yoshida M; Fujimura K; Makishima K
    Nihon Jibiinkoka Gakkai Kaiho; 1997 Dec; 100(12):1459-64. PubMed ID: 9465610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measures of auditory brain-stem responses, distortion product otoacoustic emissions, hair cell loss, and forward masked tuning curves in the waltzing guinea pig.
    Canlon B; Marklund K; Borg E
    J Acoust Soc Am; 1993 Dec; 94(6):3232-43. PubMed ID: 8300958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of pure-tone forward masking on overshoot.
    Hicks ML; Bacon SP
    J Acoust Soc Am; 1991 Jul; 90(1):228-30. PubMed ID: 1880293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of impulse noise exposure on distortion product otoacoustic emissions in the awake guinea pig.
    Emmerich E; Richter F; Meissner W; Dieroff HG
    Eur Arch Otorhinolaryngol; 2000; 257(3):128-32. PubMed ID: 10839484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Comparison of methods for early detection of noise vulnerability of the inner ear. Amplitude reduction of otoacoustic emissions are most sensitive at submaximal noise impulse exposure].
    Plinkert PK; Hemmert W; Zenner HP
    HNO; 1995 Feb; 43(2):89-97. PubMed ID: 7713771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "Linear" and "derived" otoacoustic emissions in newborns: a comparative study.
    Tognola G; Ravazzani P; Molini E; Ricci G; Alunni N; Parazzini M; Grandori F
    Ear Hear; 2001 Jun; 22(3):182-90. PubMed ID: 11409854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Otoacoustic emissions from ears with spontaneous activity behave differently to those without: Stronger responses to tone bursts as well as to clicks.
    Jedrzejczak WW; Kochanek K; Skarzynski H
    PLoS One; 2018; 13(2):e0192930. PubMed ID: 29451905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A New Hypothesis on the Frequency Discrimination of the Cochlea.
    Bulut E; Uzun C; Öztürk L; Turan P; Kanter M; Arbak S
    J Int Adv Otol; 2017 Aug; 13(2):204-210. PubMed ID: 28414275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting high-frequency hearing loss with click-evoked otoacoustic emissions.
    Keefe DH; Goodman SS; Ellison JC; Fitzpatrick DF; Gorga MP
    J Acoust Soc Am; 2011 Jan; 129(1):245-61. PubMed ID: 21303007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tone burst-evoked otoacoustic emissions in cats with acoustic overstimulation and anoxia.
    Iwasaki S; Mizuta K; Hoshino T
    Hear Res; 1998 Apr; 118(1-2):83-9. PubMed ID: 9606063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneous basilar membrane oscillation and otoacoustic emission at 15 kHz in a guinea pig.
    Nuttall AL; Grosh K; Zheng J; de Boer E; Zou Y; Ren T
    J Assoc Res Otolaryngol; 2004 Dec; 5(4):337-48. PubMed ID: 15674999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A second, low-frequency mode of vibration in the intact mammalian cochlea.
    Lukashkin AN; Russell IJ
    J Acoust Soc Am; 2003 Mar; 113(3):1544-50. PubMed ID: 12656389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Otoacoustic emissions and extended high-frequency hearing sensitivity in young adults.
    Schmuziger N; Probst R; Smurzynski J
    Int J Audiol; 2005 Jan; 44(1):24-30. PubMed ID: 15796099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of salicylate and short-term sound exposure on extracochlear electrically-evoked otoacoustic emissions.
    Fujimura K; Yoshida M; Makishima K
    Acta Otolaryngol; 2001 Oct; 121(7):781-6. PubMed ID: 11718239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.