These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 9193046)

  • 1. The mechanical waveform of the basilar membrane. I. Frequency modulations ("glides") in impulse responses and cross-correlation functions.
    de Boer E; Nuttall AL
    J Acoust Soc Am; 1997 Jun; 101(6):3583-92. PubMed ID: 9193046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanical waveform of the basilar membrane. III. Intensity effects.
    de Boer E; Nuttall AL
    J Acoust Soc Am; 2000 Mar; 107(3):1497-507. PubMed ID: 10738804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Otoacoustic emission estimates of human basilar membrane impulse response duration and cochlear filter tuning.
    Raufer S; Verhulst S
    Hear Res; 2016 Dec; 342():150-160. PubMed ID: 27989947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Basilar-membrane responses to multicomponent (Schroeder-phase) signals: understanding intensity effects.
    Summers V; de Boer E; Nuttall AL
    J Acoust Soc Am; 2003 Jul; 114(1):294-306. PubMed ID: 12880042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency glides in click responses of the basilar membrane and auditory nerve: their scaling behavior and origin in traveling-wave dispersion.
    Shera CA
    J Acoust Soc Am; 2001 May; 109(5 Pt 1):2023-34. PubMed ID: 11386555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequency glides in the impulse responses of auditory-nerve fibers.
    Carney LH; McDuffy MJ; Shekhter I
    J Acoust Soc Am; 1999 Apr; 105(4):2384-91. PubMed ID: 10212419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-tone suppression and distortion production on the basilar membrane in the hook region of cat and guinea pig cochleae.
    Rhode WS; Cooper NP
    Hear Res; 1993 Mar; 66(1):31-45. PubMed ID: 8473244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of a high-frequency suppressor on tuning curves and derived basilar-membrane response functions.
    Yasin I; Plack CJ
    J Acoust Soc Am; 2003 Jul; 114(1):322-32. PubMed ID: 12880044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneous basilar membrane oscillation and otoacoustic emission at 15 kHz in a guinea pig.
    Nuttall AL; Grosh K; Zheng J; de Boer E; Zou Y; Ren T
    J Assoc Res Otolaryngol; 2004 Dec; 5(4):337-48. PubMed ID: 15674999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Basilar membrane responses to noise at a basal site of the chinchilla cochlea: quasi-linear filtering.
    Recio-Spinoso A; Narayan SS; Ruggero MA
    J Assoc Res Otolaryngol; 2009 Dec; 10(4):471-84. PubMed ID: 19495878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanical waveform of the basilar membrane. II. From data to models--and back.
    de Boer E; Nuttall AL
    J Acoust Soc Am; 2000 Mar; 107(3):1487-96. PubMed ID: 10738803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Basilar membrane velocity noise.
    Nuttall AL; Guo M; Ren T; Dolan DF
    Hear Res; 1997 Dec; 114(1-2):35-42. PubMed ID: 9447916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanical waveform of the basilar membrane. IV. Tone and noise stimuli.
    de BE; Nuttall AL
    J Acoust Soc Am; 2002 Feb; 111(2):979-89. PubMed ID: 11863200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Speech recognition in noise: estimating effects of compressive nonlinearities in the basilar-membrane response.
    Horwitz AR; Ahlstrom JB; Dubno JR
    Ear Hear; 2007 Sep; 28(5):682-93. PubMed ID: 17804982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A phenomenological model for the responses of auditory-nerve fibers. II. Nonlinear tuning with a frequency glide.
    Tan Q; Carney LH
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):2007-20. PubMed ID: 14587601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Basilar membrane responses to broadband stimuli.
    Recio A; Rhode WS
    J Acoust Soc Am; 2000 Nov; 108(5 Pt 1):2281-98. PubMed ID: 11108369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synchronized responses of primary auditory fibre-populations in Caiman crocodilus (L.) to single tones and clicks.
    Smolders JW; Klinke R
    Hear Res; 1986; 24(2):89-103. PubMed ID: 3771380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous basilar-membrane oscillation (SBMO) and coherent reflection.
    de Boer E; Nuttall AL
    J Assoc Res Otolaryngol; 2006 Mar; 7(1):26-37. PubMed ID: 16429234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear response to a click in a time-domain model of the mammalian ear.
    Meaud J; Lemons C
    J Acoust Soc Am; 2015 Jul; 138(1):193-207. PubMed ID: 26233019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency-dependent self-induced bias of the basilar membrane and its potential for controlling sensitivity and tuning in the mammalian cochlea.
    LePage EL
    J Acoust Soc Am; 1987 Jul; 82(1):139-54. PubMed ID: 3624635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.