BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 9193057)

  • 1. Detection of silent intervals between noises activating different perceptual channels: some properties of "central" auditory gap detection.
    Phillips DP; Taylor TL; Hall SE; Carr MM; Mossop JE
    J Acoust Soc Am; 1997 Jun; 101(6):3694-705. PubMed ID: 9193057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural boundaries in gap detection are related to categorical perception of stop consonants.
    Elangovan S; Stuart A
    Ear Hear; 2008 Oct; 29(5):761-74. PubMed ID: 18769272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Between-Frequency and Between-Ear Gap Detections and Their Relation to Perception of Stop Consonants.
    Mori S; Oyama K; Kikuchi Y; Mitsudo T; Hirose N
    Ear Hear; 2015; 36(4):464-70. PubMed ID: 25565661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age-related changes in within- and between-channel gap detection using sinusoidal stimuli.
    Heinrich A; Schneider B
    J Acoust Soc Am; 2006 Apr; 119(4):2316-26. PubMed ID: 16642845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Independence of frequency channels in auditory temporal gap detection.
    Phillips DP; Hall SE
    J Acoust Soc Am; 2000 Dec; 108(6):2957-63. PubMed ID: 11144587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectral-shape discrimination. I. Results from normal-hearing listeners for stationary broadband noises.
    Farrar CL; Reed CM; Ito Y; Durlach NI; Delhorne LA; Zurek PM; Braida LD
    J Acoust Soc Am; 1987 Apr; 81(4):1085-92. PubMed ID: 3571725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of age on silent gap discrimination in synthetic speech stimuli.
    Lister J; Tarver K
    J Speech Lang Hear Res; 2004 Apr; 47(2):257-68. PubMed ID: 15157128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlations among within-channel and between-channel auditory gap-detection thresholds in normal listeners.
    Phillips DP; Smith JC
    Perception; 2004; 33(3):371-8. PubMed ID: 15176620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of age and frequency disparity on gap discrimination.
    Lister J; Besing J; Koehnke J
    J Acoust Soc Am; 2002 Jun; 111(6):2793-800. PubMed ID: 12083214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variable-duration notched-noise experiments in a broadband noise context.
    Hant JJ; Strope BP; Alwan AA
    J Acoust Soc Am; 1998 Oct; 104(4):2451-6. PubMed ID: 10491706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency and duration discrimination of short first-formant speechlike transitions.
    van Wieringen A; Pols LC
    J Acoust Soc Am; 1994 Jan; 95(1):502-11. PubMed ID: 8120261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "Central" auditory gap detection: a spatial case.
    Phillips DP; Hall SE; Harrington IA; Taylor TL
    J Acoust Soc Am; 1998 Apr; 103(4):2064-8. PubMed ID: 9566328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal gap resolution in masked normal ears as a function of masker level.
    Fitzgibbons PJ
    J Acoust Soc Am; 1984 Jul; 76(1):67-70. PubMed ID: 6747113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophysiological and psychophysical asymmetries in sensitivity to interaural correlation gaps and implications for binaural integration time.
    Lüddemann H; Kollmeier B; Riedel H
    Hear Res; 2016 Feb; 332():170-187. PubMed ID: 26526276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Azimuthal tuning of human perceptual channels for sound location.
    Boehnke SE; Phillips DP
    J Acoust Soc Am; 1999 Oct; 106(4 Pt 1):1948-55. PubMed ID: 10530019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal gap resolution in narrow-band noises with center frequencies from 6000-14000 Hz.
    Fitzgibbons PJ
    J Acoust Soc Am; 1984 Feb; 75(2):566-9. PubMed ID: 6699295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in auditory performance between monaural and dichotic conditions. I: masking thresholds in frozen noise.
    Langhans A; Kohlrausch A
    J Acoust Soc Am; 1992 Jun; 91(6):3456-70. PubMed ID: 1619122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short-term temporal integration: evidence for the influence of peripheral compression.
    Oxenham AJ; Moore BC; Vickers DA
    J Acoust Soc Am; 1997 Jun; 101(6):3676-87. PubMed ID: 9193055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of frequency selectivity and consonant recognition among hearing-impaired and masked normal-hearing listeners.
    Dubno JR; Schaefer AB
    J Acoust Soc Am; 1992 Apr; 91(4 Pt 1):2110-21. PubMed ID: 1597602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Object-based attention modulates the discrimination of level increments in stop-consonant noise bursts.
    Espinoza-Varas B; Hilton J; Guo S
    PLoS One; 2018; 13(1):e0190956. PubMed ID: 29364931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.