These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 9193059)

  • 1. Further studies of phonation threshold pressure in a physical model of the vocal fold mucosa.
    Chan RW; Titze IR; Titze MR
    J Acoust Soc Am; 1997 Jun; 101(6):3722-7. PubMed ID: 9193059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phonation threshold pressure in a physical model of the vocal fold mucosa.
    Titze IR; Schmidt SS; Titze MR
    J Acoust Soc Am; 1995 May; 97(5 Pt 1):3080-4. PubMed ID: 7759648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal glottal configuration for ease of phonation.
    Lucero JC
    J Voice; 1998 Jun; 12(2):151-8. PubMed ID: 9649070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The phonation critical condition in rectangular glottis with wide prephonatory gaps.
    Tao C; Jiang JJ
    J Acoust Soc Am; 2008 Mar; 123(3):1637-41. PubMed ID: 18345851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of impact stress using an aeroelastic model of voice production.
    Horácek J; Laukkanen AM; Sidlof P
    Logoped Phoniatr Vocol; 2007; 32(4):185-92. PubMed ID: 17990190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phonation threshold pressure: comparison of calculations and measurements taken with physical models of the vocal fold mucosa.
    Fulcher LP; Scherer RC
    J Acoust Soc Am; 2011 Sep; 130(3):1597-605. PubMed ID: 21895097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow visualization and pressure distributions in a model of the glottis with a symmetric and oblique divergent angle of 10 degrees.
    Shinwari D; Scherer RC; DeWitt KJ; Afjeh AA
    J Acoust Soc Am; 2003 Jan; 113(1):487-97. PubMed ID: 12558286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of glottal angle on intraglottal pressure.
    Li S; Scherer RC; Wan M; Wang S; Wu H
    J Acoust Soc Am; 2006 Jan; 119(1):539-48. PubMed ID: 16454307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of entrance radii on intraglottal pressure distributions in the divergent glottis.
    Li S; Scherer RC; Wan M; Wang S
    J Acoust Soc Am; 2012 Feb; 131(2):1371-7. PubMed ID: 22352510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the relation between the phonation threshold lung pressure and the oscillation frequency of the vocal folds.
    Lucero JC; Koenig LL
    J Acoust Soc Am; 2007 Jun; 121(6):3280-3. PubMed ID: 17552679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glottal flow through a two-mass model: comparison of Navier-Stokes solutions with simplified models.
    de Vries MP; Schutte HK; Veldman AE; Verkerke GJ
    J Acoust Soc Am; 2002 Apr; 111(4):1847-53. PubMed ID: 12002868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric airflow and vibration induced by the Coanda effect in a symmetric model of the vocal folds.
    Tao C; Zhang Y; Hottinger DG; Jiang JJ
    J Acoust Soc Am; 2007 Oct; 122(4):2270-8. PubMed ID: 17902863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dependence of phonation threshold pressure on vocal tract acoustics and vocal fold tissue mechanics.
    Chan RW; Titze IR
    J Acoust Soc Am; 2006 Apr; 119(4):2351-62. PubMed ID: 16642848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical study of the effects of inferior and superior vocal fold surface angles on vocal fold pressure distributions.
    Li S; Scherer RC; Wan M; Wang S; Wu H
    J Acoust Soc Am; 2006 May; 119(5 Pt 1):3003-10. PubMed ID: 16708956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intraglottal pressure profiles for a symmetric and oblique glottis with a divergence angle of 10 degrees.
    Scherer RC; Shinwari D; De Witt KJ; Zhang C; Kucinschi BR; Afjeh AA
    J Acoust Soc Am; 2001 Apr; 109(4):1616-30. PubMed ID: 11325132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the effects of a posterior glottal opening on vocal fold dynamics with implications for vocal hyperfunction.
    Zañartu M; Galindo GE; Erath BD; Peterson SD; Wodicka GR; Hillman RE
    J Acoust Soc Am; 2014 Dec; 136(6):3262. PubMed ID: 25480072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The minimum glottal airflow to initiate vocal fold oscillation.
    Jiang JJ; Tao C
    J Acoust Soc Am; 2007 May; 121(5 Pt1):2873-81. PubMed ID: 17550186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phonation threshold pressure using a 3-mass model of phonation with empirical pressure values.
    Perrine BL; Scherer RC; Fulcher LP; Zhai G
    J Acoust Soc Am; 2020 Mar; 147(3):1727. PubMed ID: 32237868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vocal fold collision threshold pressure: An alternative to phonation threshold pressure?
    Enflo L; Sundberg J
    Logoped Phoniatr Vocol; 2009 Dec; 34(4):210-7. PubMed ID: 19916893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of vocal fold impact pressures with a self-oscillating finite-element model.
    Tao C; Jiang JJ; Zhang Y
    J Acoust Soc Am; 2006 Jun; 119(6):3987-94. PubMed ID: 16838541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.