These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 9193154)

  • 1. Behavioural analysis of Purkinje cell output from the horizontal zone of the cat flocculus.
    Cheron G; Dufief MP; Gerrits NM; Draye JP; Godaux E
    Prog Brain Res; 1997; 114():347-56. PubMed ID: 9193154
    [No Abstract]   [Full Text] [Related]  

  • 2. Eye movement control by Purkinje cell/climbing fiber zones of cerebellar flocculus in cat.
    Sato Y; Kawasaki T; Mizukoshi K
    Acta Otolaryngol Suppl; 1991; 481():237-41. PubMed ID: 1927384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Existence in the nucleus incertus of the cat of horizontal-eye-movement-related neurons projecting to the cerebellar flocculus.
    Cheron G; Saussez S; Gerrits N; Godaux E
    J Neurophysiol; 1995 Sep; 74(3):1367-72. PubMed ID: 7500160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discharge properties of brain stem neurons projecting to the flocculus in the alert cat. I. Medical vestibular nucleus.
    Cheron G; Escudero M; Godaux E
    J Neurophysiol; 1996 Sep; 76(3):1759-74. PubMed ID: 8890290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different roles of flocculus and ventral paraflocculus for oculomotor control in the primate.
    Nagao S
    Neuroreport; 1992 Jan; 3(1):13-6. PubMed ID: 1611029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Purkinje cells in the goldfish cerebellum during eye movement and adaptive modification of the vestibulo-ocular reflex.
    Pastor AM; De la Cruz RR; Baker R
    Prog Brain Res; 1997; 114():359-81. PubMed ID: 9193155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Responses during eye movements of brain stem neurons that receive monosynaptic inhibition from the flocculus and ventral paraflocculus in monkeys.
    Lisberger SG; Pavelko TA; Broussard DM
    J Neurophysiol; 1994 Aug; 72(2):909-27. PubMed ID: 7983546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the cerebellar flocculus region in the coordination of eye and head movements during gaze pursuit.
    Belton T; McCrea RA
    J Neurophysiol; 2000 Sep; 84(3):1614-26. PubMed ID: 10980031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gain changes of the cat's vestibulo-ocular reflex after flocculus deactivation.
    Luebke AE; Robinson DA
    Exp Brain Res; 1994; 98(3):379-90. PubMed ID: 8056061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gain adaptation and phase dynamics of compensatory eye movements in mice.
    Koekkoek SK; v Alphen AM; vd Burg J; Grosveld F; Galjart N; De Zeeuw CI
    Genes Funct; 1997 Jun; 1(3):175-90. PubMed ID: 9680293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of reversible shutdown of the monkey flocculus on the retention of adaptation of the horizontal vestibulo-ocular reflex.
    Nagao S; Kitazawa H
    Neuroscience; 2003; 118(2):563-70. PubMed ID: 12699790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topographical representation of vestibulo-ocular reflexes in rabbit cerebellar flocculus.
    Ito M; Orlov I; Yamamoto M
    Neuroscience; 1982 Jul; 7(7):1657-64. PubMed ID: 7121830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the cerebellar flocculus region in cancellation of the VOR during passive whole body rotation.
    Belton T; McCrea RA
    J Neurophysiol; 2000 Sep; 84(3):1599-613. PubMed ID: 10980030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase relations of Purkinje cells in the rabbit flocculus during compensatory eye movements.
    De Zeeuw CI; Wylie DR; Stahl JS; Simpson JI
    J Neurophysiol; 1995 Nov; 74(5):2051-64. PubMed ID: 8592196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of oculomotor signals to the behavior of rabbit floccular Purkinje cells during reflex eye movements.
    Nagao S
    Neurosci Res; 1991 Oct; 12(1):169-84. PubMed ID: 1660984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complex spike responses of cerebellar Purkinje cells to constant velocity optokinetic stimuli in the cat flocculus.
    Sato Y; Miura A; Fushiki H; Kawasaki T; Watanabe Y
    Acta Otolaryngol Suppl; 1993; 504():13-6. PubMed ID: 8470518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The neurophysiological substrate for the cervico-ocular reflex in the squirrel monkey.
    Gdowski GT; Belton T; McCrea RA
    Exp Brain Res; 2001 Oct; 140(3):253-64. PubMed ID: 11681301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motor dynamics encoding in the rostral zone of the cat cerebellar flocculus during vertical optokinetic eye movements.
    Mizukoshi A; Kitama T; Omata T; Ueno T; Kawato M; Sato Y
    Exp Brain Res; 2000 May; 132(2):260-8. PubMed ID: 10853950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 4-aminopyridine does not enhance flocculus function in tottering, a mouse model of vestibulocerebellar dysfunction and ataxia.
    Stahl JS; Thumser ZC
    PLoS One; 2013; 8(2):e57895. PubMed ID: 23451282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optokinetic response of simple spikes of Purkinje cells in the cerebellar flocculus and nodulus of the pigmented rabbit.
    Kano M; Kano MS; Maekawa K
    Exp Brain Res; 1991; 87(3):484-96. PubMed ID: 1783019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.