These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 9193899)

  • 41. Thiopental-induced burst suppression measured by the bispectral index is extended during propofol administration compared with sevoflurane.
    Yoon JR; Kim YS; Kim TK
    J Neurosurg Anesthesiol; 2012 Apr; 24(2):146-51. PubMed ID: 22210231
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effect of high dose sodium thiopental on brain stem auditory and median nerve somatosensory evoked responses in humans.
    Drummond JC; Todd MM; U HS
    Anesthesiology; 1985 Sep; 63(3):249-54. PubMed ID: 4025886
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Computer simulation of the effects of alterations in blood flows and body composition on thiopental pharmacokinetics in humans.
    Wada DR; Björkman S; Ebling WF; Harashima H; Harapat SR; Stanski DR
    Anesthesiology; 1997 Oct; 87(4):884-99. PubMed ID: 9357892
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Myocardial uptake of thiopental enantiomers by the isolated perfused rat heart.
    Nguyen KT; Morgan DJ
    Chirality; 1996; 8(7):477-80. PubMed ID: 8970743
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The nonlinear responses of cerebral metabolism to low concentrations of halothane, enflurane, isoflurane, and thiopental.
    Stullken EH; Milde JH; Michenfelder JD; Tinker JH
    Anesthesiology; 1977 Jan; 46(1):28-34. PubMed ID: 831591
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pharmacokinetic and pharmacodynamic consequences of thiopental in renal dysfunction rats: evaluation with electroencephalography.
    Srivastava K; Hatanaka T; Katayama K; Koizumi T
    Biol Pharm Bull; 1998 Dec; 21(12):1327-33. PubMed ID: 9881648
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thiopental as an adjunct to hypothermia for EEG suppression in infants prior to circulatory arrest.
    Rung GW; Wickey GS; Myers JL; Salus JE; Hensley FA; Martin DE
    J Cardiothorac Vasc Anesth; 1991 Aug; 5(4):337-42. PubMed ID: 1873512
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pharmacodynamics of thiopentone: nocifensive reflex threshold changes correlate with hippocampal electroencephalography.
    Archer DP; Roth SH
    Br J Anaesth; 1997 Dec; 79(6):744-9. PubMed ID: 9496206
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Anesthetic-induced burst suppression EEG activity requires glutamate-mediated excitatory synaptic transmission.
    Lukatch HS; Kiddoo CE; Maciver MB
    Cereb Cortex; 2005 Sep; 15(9):1322-31. PubMed ID: 15647528
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Thiopental dose requirements for induction of anaesthesia and subsequent endotracheal intubation in patients with complete spinal cord injuries.
    Yoo KY; Jeong CW; Jeong HJ; Lee SH; Na JH; Kim SJ; Jeong ST; Lee J
    Acta Anaesthesiol Scand; 2012 Jul; 56(6):770-6. PubMed ID: 22288930
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of high pressure on EEG burst suppression dose of thiopental in rats.
    Aanderud L; Ursin R; Larsen M
    Undersea Biomed Res; 1982 Sep; 9(3):255-61. PubMed ID: 7135635
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Estimating the rate of thiopental blood-brain equilibration using pseudo steady state serum concentrations.
    Maitre PO; Bührer M; Shafer SL; Stanski DR
    J Pharmacokinet Biopharm; 1990 Jun; 18(3):175-87. PubMed ID: 2380918
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Functional magnetic resonance imaging of swine brain during change in thiopental anesthesia into EEG burst-suppression level--a preliminary study.
    Mäkiranta MJ; Jauhiainen JP; Oikarinen JT; Suominen K; Tervonen O; Alahuhta S; Jäntti V
    MAGMA; 2002 Nov; 15(1-3):27-35. PubMed ID: 12413562
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interaction between ciprofloxacin and thiopental in the central nervous system of the male rat.
    Schliamser SE; Broholm KA; Wahlström G
    Pharmacol Toxicol; 1992 Nov; 71(5):348-52. PubMed ID: 1448448
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Using front-end kinetics to optimize target-controlled drug infusions.
    Avram MJ; Krejcie TC
    Anesthesiology; 2003 Nov; 99(5):1078-86. PubMed ID: 14576543
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Age-related changes in CNS-sensitivity to hexobarbital and thiopental in the rat.
    Bolander HG; WahlströmG
    Arch Int Pharmacodyn Ther; 1984 Feb; 267(2):213-23. PubMed ID: 6712356
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enantioselectivity of thiopental distribution into the central neural tissue of rats: an interaction with halothane.
    Mather LE; Edwards SR; Duke CC; Cousins MJ
    Anesth Analg; 1999 Jul; 89(1):230-5. PubMed ID: 10389810
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A model of the kinetics and dynamics of induction of anaesthesia in sheep: variable estimation for thiopental and comparison with propofol.
    Upton RN; Ludbrook GL
    Br J Anaesth; 1999 Jun; 82(6):890-9. PubMed ID: 10562785
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Anesthetic and cardiorespiratory effects of a 1:1 mixture of propofol and thiopental sodium in dogs.
    Ko JC; Golder FJ; Mandsager RE; Heaton-Jones T; Mattern KL
    J Am Vet Med Assoc; 1999 Nov; 215(9):1292-6. PubMed ID: 10553440
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Time-dependent pharmacokinetics of high dose thiopental infusion in intensive care patients.
    Russo H; Dubboin MP; Bressolle F; Urien S
    Pharm Res; 1997 Nov; 14(11):1583-8. PubMed ID: 9434278
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.