These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 9194130)
1. Design of applicators for a 27 MHz multielectrode current source interstitial hyperthermia system; impedance matching and effective power. Kaatee RS; Crezee J; Kanis AP; Lagendijk JJ; Levendag PC; Visser AG Phys Med Biol; 1997 Jun; 42(6):1087-108. PubMed ID: 9194130 [TBL] [Abstract][Full Text] [Related]
2. Temperature measurement errors with thermocouples inside 27 MHz current source interstitial hyperthermia applicators. Kaatee RS; Crezee H; Visser AG Phys Med Biol; 1999 Jun; 44(6):1499-511. PubMed ID: 10498519 [TBL] [Abstract][Full Text] [Related]
3. Clinical thermometry, using the 27 MHz multi-electrode current-source interstitial hyperthermia system in brain tumours. Kaatee RS; Nowak PC; van der Zee J; de Bree J; Kanis BP; Crezee H; Levendag PC; Visser AG Radiother Oncol; 2001 May; 59(2):227-31. PubMed ID: 11325454 [TBL] [Abstract][Full Text] [Related]
4. Implications of using thermocouple thermometry in 27 MHz capacitively coupled interstitial hyperthermia. Crezee J; van der Koijk JF; Kaatee RS; Lagendijk JJ Phys Med Biol; 1997 Apr; 42(4):637-50. PubMed ID: 9127442 [TBL] [Abstract][Full Text] [Related]
5. Spatial temperature control with a 27 MHz current source interstitial hyperthermia system. Kaatee RS; Crezee H; Kanis BP; Lagendijk JJ; Levendag PC; Visser AG Int J Radiat Oncol Biol Phys; 1997 Jan; 37(1):189-97. PubMed ID: 9054895 [TBL] [Abstract][Full Text] [Related]
6. Thermal properties of capacitively coupled electrodes in interstitial hyperthermia. van der Koijk JF; Crezee J; Lagendijk JJ Phys Med Biol; 1998 Jan; 43(1):139-53. PubMed ID: 9483628 [TBL] [Abstract][Full Text] [Related]
7. Heating pattern of helical microwave intracavitary oesophageal applicator. Liu RL; Zhang EY; Gross EJ; Cetas TC Int J Hyperthermia; 1991; 7(4):577-86. PubMed ID: 1919153 [TBL] [Abstract][Full Text] [Related]
8. Preclinical evaluation of submillimeter diameter microwave interstitial hyperthermia applicators. Gottlieb C; Moffat F; Hagmann M; Babij T; Abitbol A; Lewin A; Houdek P; Schwade J J Microw Power Electromagn Energy; 1990; 25(3):149-60. PubMed ID: 2266468 [TBL] [Abstract][Full Text] [Related]
9. A new coaxial TEM radiofrequency/microwave applicator for non-invasive deep-body hyperthermia. Lagendijk JJ J Microw Power; 1983 Dec; 18(4):367-75. PubMed ID: 6561256 [TBL] [Abstract][Full Text] [Related]
10. Pre-clinical evaluation of a microwave planar array applicator for superficial hyperthermia. Diederich CJ; Stauffer PR Int J Hyperthermia; 1993; 9(2):227-46. PubMed ID: 8468507 [TBL] [Abstract][Full Text] [Related]
11. A 27 MHz current source interstitial hyperthermia system for small animals. Kaatee RS; Kampmeijer AG; van Hooije CM; van Rhoon GC; Kanis AP; Levendag PC; Visser AG Int J Hyperthermia; 1995; 11(6):785-96. PubMed ID: 8586900 [TBL] [Abstract][Full Text] [Related]
12. Current sheet applicator arrays for superficial hyperthermia of chestwall lesions. Gopal MK; Hand JW; Lumori ML; Alkhairi S; Paulsen KD; Cetas TC Int J Hyperthermia; 1992; 8(2):227-40. PubMed ID: 1573312 [TBL] [Abstract][Full Text] [Related]
13. Multisectored interstitial ultrasound applicators for dynamic angular control of thermal therapy. Kinsey AM; Diederich CJ; Tyreus PD; Nau WH; Rieke V; Pauly KB Med Phys; 2006 May; 33(5):1352-63. PubMed ID: 16752571 [TBL] [Abstract][Full Text] [Related]
14. Application of a capacitive-coupling interstitial hyperthermia system at 27 MHz: study of different applicator configurations. Deurloo IK; Visser AG; Morawska M; van Geel CA; van Rhoon GC; Levendag PC Phys Med Biol; 1991 Jan; 36(1):119-32. PubMed ID: 2006211 [TBL] [Abstract][Full Text] [Related]
15. Preclinical prototype validation and characterization of a thermobrachytherapy system for interstitial hyperthermia and high-dose-rate brachytherapy. Androulakis I; Mestrom RMC; Curto S; Kolkman-Deurloo IK; van Rhoon GC Phys Imaging Radiat Oncol; 2024 Jul; 31():100606. PubMed ID: 39100864 [TBL] [Abstract][Full Text] [Related]
16. Use of the impedance method to calculate 3-D power deposition patterns for hyperthermia with capacitive plate electrodes. Orcutt N; Gandhi OP IEEE Trans Biomed Eng; 1990 Jan; 37(1):36-43. PubMed ID: 2303268 [TBL] [Abstract][Full Text] [Related]
17. Large stationary microstrip arrays for superficial microwave hyperthermia at 433 MHz: SAR analysis and clinical data. Ryan TP; Backus VL; Coughlin CT Int J Hyperthermia; 1995; 11(2):187-209. PubMed ID: 7790734 [TBL] [Abstract][Full Text] [Related]
18. Air-cooling of direct-coupled ultrasound applicators for interstitial hyperthermia and thermal coagulation. Deardorff DL; Diederich CJ; Nau WH Med Phys; 1998 Dec; 25(12):2400-9. PubMed ID: 9874834 [TBL] [Abstract][Full Text] [Related]
19. Computer-aided design of two-dimensional electric-type hyperthermia applicators using the finite-difference time-domain method. Shaw JA; Durney CH; Christensen DA IEEE Trans Biomed Eng; 1991 Sep; 38(9):861-70. PubMed ID: 1743734 [TBL] [Abstract][Full Text] [Related]
20. Utilization of a multilayer polyacrylamide phantom for evaluation of hyperthermia applicators. Surowiec A; Shrivastava PN; Astrahan M; Petrovich Z Int J Hyperthermia; 1992; 8(6):795-807. PubMed ID: 1479205 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]