These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 9194131)

  • 1. The feasibility of measuring bone uranium concentrations in vivo using source excited K x-ray fluorescence.
    O'Meara JM; Chettle DR; McNeill FE; Webber CE
    Phys Med Biol; 1997 Jun; 42(6):1109-20. PubMed ID: 9194131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo X-ray fluorescence (XRF) measurement of uranium in bone.
    O'Meara JM; Chettle DR; McNeill FE; Webber CE
    Appl Radiat Isot; 1998; 49(5-6):713-5. PubMed ID: 9569588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo simulation of source-excited in vivo x-ray fluorescence measurements of heavy metals.
    O'Meara JM; Chettle DR; McNeill FE; Prestwich WV; Svensson CE
    Phys Med Biol; 1998 Jun; 43(6):1413-28. PubMed ID: 9651014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comments on the paper 'Monte Carlo simulation of source-excited in vivo x-ray fluorescence measurements of heavy metals'.
    Tartari A; Casnati E; Baraldi C; Fernandez JE; Felsteiner J
    Phys Med Biol; 1999 Mar; 44(3):L3-6. PubMed ID: 10211815
    [No Abstract]   [Full Text] [Related]  

  • 5. Quantification of bone strontium levels in humans by in vivo x-ray fluorescence.
    Pejović-Milić A; Stronach IM; Gyorffy J; Webber CE; Chettle DR
    Med Phys; 2004 Mar; 31(3):528-38. PubMed ID: 15070251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Normalisation with coherent scatter signal: improvements in the calibration procedure of the 57Co-based in vivo XRF bone-Pb measurement.
    O'Meara JM; Börjesson J; Chettle DR; Mattsson S
    Appl Radiat Isot; 2001 Feb; 54(2):319-25. PubMed ID: 11200895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The feasibility of measuring silver concentrations in vivo with x-ray fluorescence.
    Graham SA; O'Meara JM
    Phys Med Biol; 2004 Aug; 49(15):N259-66. PubMed ID: 15379029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of in vivo X-ray fluorescence analysis methods for bone lead by simulation with the Monte Carlo code CEARXRF.
    Ao Q; Lee SH; Gardner RP
    Appl Radiat Isot; 1997; 48(10-12):1413-23. PubMed ID: 9463867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ex vivo evaluation of a coherent normalization procedure to quantify in vivo finger strontium XRS measurements.
    Heirwegh CM; Chettle DR; Pejovicc-Milicc A
    Med Phys; 2012 Feb; 39(2):832-41. PubMed ID: 22320793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Non-invasive determination of bone lead in human body using X-ray fluorescence excited by 109Cd].
    Huang SB; Tian L; Cheng HS; Pei P
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Nov; 24(11):1470-2. PubMed ID: 15762508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lead in bone: sampling and quantitation using K X-rays excited by 109Cd.
    Chettle DR; Scott MC; Somervaille LJ
    Environ Health Perspect; 1991 Feb; 91():49-55. PubMed ID: 2040251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo measurement of lead in bone using x-ray fluorescence.
    Somervaille LJ; Chettle DR; Scott MC
    Phys Med Biol; 1985 Sep; 30(9):929-43. PubMed ID: 4048276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coherent-Compton scattering for the assessment of bone mineral content using heavily filtered x-ray beams.
    Webster DJ; Lillicrap SC
    Phys Med Biol; 1985 Jun; 30(6):531-9. PubMed ID: 4011675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating coherent normalization and dosimetry for the
    Nguyen J; Pejović-Milić A; Gräfe JL
    Physiol Meas; 2020 Aug; 41(7):075014. PubMed ID: 32392547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A feasibility study to determine the potential of in vivo detection of gadolinium by x-ray fluorescence (XRF) following gadolinium-based contrast-enhanced MRI.
    Mostafaei F; McNeill FE; Chettle DR; Noseworthy MD
    Physiol Meas; 2015 Jan; 36(1):N1-13. PubMed ID: 25501799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvements in the calibration of 109Cd K x-ray fluorescence systems for measuring bone lead in vivo.
    Aro AC; Todd AC; Amarasiriwardena C; Hu H
    Phys Med Biol; 1994 Dec; 39(12):2263-71. PubMed ID: 15551552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of the specific purpose Monte Carlo code CEARXRF for the design and use of in vivo X-ray fluorescence analysis systems for lead in bone.
    Ao Q; Lee SH; Gardner RP
    Appl Radiat Isot; 1997; 48(10-12):1403-12. PubMed ID: 9463866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preliminary studies on combining the K and L XRF methods for in vivo bone lead measurement.
    Lee SH; Gardner RP; Todd AC
    Appl Radiat Isot; 2001 Jun; 54(6):893-904. PubMed ID: 11300402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The feasibility of in vivo detection of lanthanum using a
    Nguyen J; Keldani Z; Da Silva E; Pejović-Milić A; Gräfe JL
    Physiol Meas; 2017 Aug; 38(9):1766-1775. PubMed ID: 28752824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Monte Carlo (MC) based individual calibration method for in vivo x-ray fluorescence analysis (XRF).
    Hansson M; Isaksson M
    Phys Med Biol; 2007 Apr; 52(7):2009-19. PubMed ID: 17374924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.