BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 9194165)

  • 1. The role of the Cys191-Cys220 disulfide bond in trypsin: new targets for engineering substrate specificity.
    Wang EC; Hung SH; Cahoon M; Hedstrom L
    Protein Eng; 1997 Apr; 10(4):405-11. PubMed ID: 9194165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three dimensional structures of S189D chymotrypsin and D189S trypsin mutants: the effect of polarity at site 189 on a protease-specific stabilization of the substrate-binding site.
    Szabó E; Venekei I; Böcskei Z; Náray-Szabó G; Gráf L
    J Mol Biol; 2003 Aug; 331(5):1121-30. PubMed ID: 12927546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conversion of trypsin to a functional threonine protease.
    Baird TT; Wright WD; Craik CS
    Protein Sci; 2006 Jun; 15(6):1229-38. PubMed ID: 16672242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graspases--a special group of serine proteases of the chymotrypsin family that has lost a conserved active site disulfide bond.
    Zamolodchikova TS; Sokolova EA; Smirnova EV
    Biochemistry (Mosc); 2003 Mar; 68(3):309-16. PubMed ID: 12733972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activating a zymogen without proteolytic processing: mutation of Lys15 and Asn194 activates trypsinogen.
    Pasternak A; Liu X; Lin TY; Hedstrom L
    Biochemistry; 1998 Nov; 37(46):16201-10. PubMed ID: 9819212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrophobic interactions control zymogen activation in the trypsin family of serine proteases.
    Hedstrom L; Lin TY; Fast W
    Biochemistry; 1996 Apr; 35(14):4515-23. PubMed ID: 8605201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of secondary interactions on the kinetics of peptide and peptide ester hydrolysis by tissue kallikrein and trypsin.
    Fiedler F
    Eur J Biochem; 1987 Mar; 163(2):303-12. PubMed ID: 3643848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disulfide bond-modified trypsinogen. Role of disulfide 179-203 on the specificity characteristics of bovine trypsin toward synthetic substrates.
    Knights RJ; Light A
    J Biol Chem; 1976 Jan; 251(1):222-8. PubMed ID: 942666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of single-disulfide variants of bovine pancreatic trypsin inhibitor (BPTI) as probed by their binding to bovine beta-trypsin.
    Krokoszynska I; Dadlez M; Otlewski J
    J Mol Biol; 1998 Jan; 275(3):503-13. PubMed ID: 9466927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Converting trypsin to chymotrypsin: the role of surface loops.
    Hedstrom L; Szilagyi L; Rutter WJ
    Science; 1992 Mar; 255(5049):1249-53. PubMed ID: 1546324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation between disulfide reduction and conformational unfolding in bovine pancreatic trypsin inhibitor.
    Ma LC; Anderson S
    Biochemistry; 1997 Mar; 36(12):3728-36. PubMed ID: 9132026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "Designing out" disulfide bonds: thermodynamic properties of 30-51 cystine substitution mutants of bovine pancreatic trypsin inhibitor.
    Liu Y; Breslauer K; Anderson S
    Biochemistry; 1997 May; 36(18):5323-35. PubMed ID: 9154914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of disulfide bond C191-C220 in trypsin and chymotrypsin.
    Várallyay E; Lengyel Z; Gráf L; Szilágyi L
    Biochem Biophys Res Commun; 1997 Jan; 230(3):592-6. PubMed ID: 9015368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of the activity of mitochondrial aspartate aminotransferase H352C by the redox state of the engineered interdomain disulfide bond.
    Pan P; Jakob CA; Sandmeier E; Christen P; Gehring H
    J Biol Chem; 1994 Oct; 269(41):25432-6. PubMed ID: 7929241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering the S1' subsite of trypsin: design of a protease which cleaves between dibasic residues.
    Kurth T; Grahn S; Thormann M; Ullmann D; Hofmann HJ; Jakubke HD; Hedstrom L
    Biochemistry; 1998 Aug; 37(33):11434-40. PubMed ID: 9708978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel chiral microenvironmental probe at the active site of trypsin. Extrinsic cotton effects of acyl-trypsin possessing an enantiomeric pair of chromophores.
    Nakayama H; Tanizawa K; Kanaoka Y; Witkop B
    Eur J Biochem; 1980 Nov; 112(2):403-9. PubMed ID: 7460930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complete folding of bovine pancreatic trypsin inhibitor with only a single disulfide bond.
    Staley JP; Kim PS
    Proc Natl Acad Sci U S A; 1992 Mar; 89(5):1519-23. PubMed ID: 1371875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of individual cysteine residues and disulfide bonds in the structure and function of Aspergillus ribonucleolytic toxin restrictocin.
    Nayak SK; Rathore D; Batra JK
    Biochemistry; 1999 Aug; 38(31):10052-8. PubMed ID: 10433712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Native-like conformations are sampled by partially folded and disordered variants of bovine pancreatic trypsin inhibitor.
    Tulla-Puche J; Getun IV; Woodward C; Barany G
    Biochemistry; 2004 Feb; 43(6):1591-8. PubMed ID: 14769035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of peptide enzymes (pepzymes): surface-simulation synthetic peptides that mimic the chymotrypsin and trypsin active sites exhibit the activity and specificity of the respective enzyme.
    Atassi MZ; Manshouri T
    Proc Natl Acad Sci U S A; 1993 Sep; 90(17):8282-6. PubMed ID: 8367494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.