These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 9194174)

  • 21. Hydrophobic core substitutions in calbindin D9k: effects on Ca2+ binding and dissociation.
    Kragelund BB; Jönsson M; Bifulco G; Chazin WJ; Nilsson H; Finn BE; Linse S
    Biochemistry; 1998 Jun; 37(25):8926-37. PubMed ID: 9636034
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 1 A crystal structures of B-DNA reveal sequence-specific binding and groove-specific bending of DNA by magnesium and calcium.
    Chiu TK; Dickerson RE
    J Mol Biol; 2000 Aug; 301(4):915-45. PubMed ID: 10966796
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structures of restriction endonuclease HindIII in complex with its cognate DNA and divalent cations.
    Watanabe N; Takasaki Y; Sato C; Ando S; Tanaka I
    Acta Crystallogr D Biol Crystallogr; 2009 Dec; 65(Pt 12):1326-33. PubMed ID: 19966419
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of renal calbindin-D28K.
    Hemmingsen C
    Pharmacol Toxicol; 2000; 87 Suppl 3():5-30. PubMed ID: 11097107
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two divalent metal ions in the active site of a new crystal form of human apurinic/apyrimidinic endonuclease, Ape1: implications for the catalytic mechanism.
    Beernink PT; Segelke BW; Hadi MZ; Erzberger JP; Wilson DM; Rupp B
    J Mol Biol; 2001 Apr; 307(4):1023-34. PubMed ID: 11286553
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of calcium binding on the side-chain methyl dynamics of calbindin D9k: a 2H NMR relaxation study.
    Johnson E; Chazin WJ; Rance M
    J Mol Biol; 2006 Apr; 357(4):1237-52. PubMed ID: 16476440
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solution structure of the RNase H domain of the HIV-1 reverse transcriptase in the presence of magnesium.
    Pari K; Mueller GA; DeRose EF; Kirby TW; London RE
    Biochemistry; 2003 Jan; 42(3):639-50. PubMed ID: 12534276
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Atomic-resolution crystal structures of B-DNA reveal specific influences of divalent metal ions on conformation and packing.
    Minasov G; Tereshko V; Egli M
    J Mol Biol; 1999 Aug; 291(1):83-99. PubMed ID: 10438608
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Calcium- and magnesium-dependent interactions between calcium- and integrin-binding protein and the integrin alphaIIb cytoplasmic domain.
    Yamniuk AP; Vogel HJ
    Protein Sci; 2005 Jun; 14(6):1429-37. PubMed ID: 15883187
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conformational study of silk-like peptides containing the calcium-binding sequence from calbindin D9k using 13C CP/MAS NMR spectroscopy.
    Asakura T; Hamada M; Nakazawa Y; Ha SW; Knight DP
    Biomacromolecules; 2006 Feb; 7(2):627-34. PubMed ID: 16471940
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of the N-terminal helix in the metal ion-induced activation of the diphtheria toxin repressor DtxR.
    D'Aquino JA; Lattimer JR; Denninger A; D'Aquino KE; Ringe D
    Biochemistry; 2007 Oct; 46(42):11761-70. PubMed ID: 17902703
    [TBL] [Abstract][Full Text] [Related]  

  • 32. X-ray structures of the microglia/macrophage-specific protein Iba1 from human and mouse demonstrate novel molecular conformation change induced by calcium binding.
    Yamada M; Ohsawa K; Imai Y; Kohsaka S; Kamitori S
    J Mol Biol; 2006 Dec; 364(3):449-57. PubMed ID: 17011575
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural dynamics in the C-terminal domain of calmodulin at low calcium levels.
    Malmendal A; Evenäs J; Forsén S; Akke M
    J Mol Biol; 1999 Nov; 293(4):883-99. PubMed ID: 10543974
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crystal structure of native and Cd/Cd-substituted Dioclea guianensis seed lectin. A novel manganese-binding site and structural basis of dimer-tetramer association.
    Wah DA; Romero A; Gallego del Sol F; Cavada BS; Ramos MV; Grangeiro TB; Sampaio AH; Calvete JJ
    J Mol Biol; 2001 Jul; 310(4):885-94. PubMed ID: 11453695
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Changes in structure and stability of calbindin-D(28K) upon calcium binding.
    Venyaminov SY; Klimtchuk ES; Bajzer Z; Craig TA
    Anal Biochem; 2004 Nov; 334(1):97-105. PubMed ID: 15464957
    [TBL] [Abstract][Full Text] [Related]  

  • 36. EGF-like module pair 3-4 in vitamin K-dependent protein S: modulation of calcium affinity of module 4 by module 3, and interaction with factor X.
    Stenberg Y; Muranyi A; Steen C; Thulin E; Drakenberg T; Stenflo J
    J Mol Biol; 1999 Oct; 293(3):653-65. PubMed ID: 10543957
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The structures of Escherichia coli inorganic pyrophosphatase complexed with Ca(2+) or CaPP(i) at atomic resolution and their mechanistic implications.
    Samygina VR; Popov AN; Rodina EV; Vorobyeva NN; Lamzin VS; Polyakov KM; Kurilova SA; Nazarova TI; Avaeva SM
    J Mol Biol; 2001 Nov; 314(3):633-45. PubMed ID: 11846572
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Domain organization of calbindin D28k as determined from the association of six synthetic EF-hand fragments.
    Linse S; Thulin E; Gifford LK; Radzewsky D; Hagan J; Wilk RR; Akerfeldt KS
    Protein Sci; 1997 Nov; 6(11):2385-96. PubMed ID: 9385641
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of the metal-binding cooperativity of wild-type and mutant calbindin D9K by electrospray ionization mass spectrometry.
    Chazin W; Veenstra TD
    Rapid Commun Mass Spectrom; 1999; 13(6):548-55. PubMed ID: 10204248
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural studies on the Ca2+-binding domain of human nucleobindin (calnuc).
    de Alba E; Tjandra N
    Biochemistry; 2004 Aug; 43(31):10039-49. PubMed ID: 15287731
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.