BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 9194709)

  • 1. Role of the transcriptional activator RocR in the arginine-degradation pathway of Bacillus subtilis.
    Gardan R; Rapoport G; Débarbouillé M
    Mol Microbiol; 1997 May; 24(4):825-37. PubMed ID: 9194709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of the rocDEF operon involved in arginine catabolism in Bacillus subtilis.
    Gardan R; Rapoport G; Débarbouillé M
    J Mol Biol; 1995 Jun; 249(5):843-56. PubMed ID: 7540694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RocR, a novel regulatory protein controlling arginine utilization in Bacillus subtilis, belongs to the NtrC/NifA family of transcriptional activators.
    Calogero S; Gardan R; Glaser P; Schweizer J; Rapoport G; Debarbouille M
    J Bacteriol; 1994 Mar; 176(5):1234-41. PubMed ID: 8113162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specificity of the interaction of RocR with the rocG-rocA intergenic region in Bacillus subtilis.
    Ali NO; Jeusset J; Larquet E; Le Cam E; Belitsky B; Sonenshein AL; Msadek T; Débarbouillé M
    Microbiology (Reading); 2003 Mar; 149(Pt 3):739-750. PubMed ID: 12634342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ornithine is the central intermediate in the arginine degradative pathway and its regulation in Bacillus subtilis.
    Warneke R; Garbers TB; Herzberg C; Aschenbrandt G; Ficner R; Stülke J
    J Biol Chem; 2023 Jul; 299(7):104944. PubMed ID: 37343703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutational activation of the RocR activator and of a cryptic rocDEF promoter bypass loss of the initial steps of proline biosynthesis in Bacillus subtilis.
    Zaprasis A; Hoffmann T; Wünsche G; Flórez LA; Stülke J; Bremer E
    Environ Microbiol; 2014 Mar; 16(3):701-17. PubMed ID: 23869754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A binding site for activation by the Bacillus subtilis AhrC protein, a repressor/activator of arginine metabolism.
    Klingel U; Miller CM; North AK; Stockley PG; Baumberg S
    Mol Gen Genet; 1995 Aug; 248(3):329-40. PubMed ID: 7565595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of bkdR, a transcriptional activator of the sigL-dependent isoleucine and valine degradation pathway in Bacillus subtilis.
    Debarbouille M; Gardan R; Arnaud M; Rapoport G
    J Bacteriol; 1999 Apr; 181(7):2059-66. PubMed ID: 10094682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Operator interactions by the Bacillus subtilis arginine repressor/activator, AhrC: novel positioning and DNA-mediated assembly of a transcriptional activator at catabolic sites.
    Miller CM; Baumberg S; Stockley PG
    Mol Microbiol; 1997 Oct; 26(1):37-48. PubMed ID: 9383188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An enhancer element located downstream of the major glutamate dehydrogenase gene of Bacillus subtilis.
    Belitsky BR; Sonenshein AL
    Proc Natl Acad Sci U S A; 1999 Aug; 96(18):10290-5. PubMed ID: 10468601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and function of the arginine repressor-operator complex from Bacillus subtilis.
    Garnett JA; Marincs F; Baumberg S; Stockley PG; Phillips SE
    J Mol Biol; 2008 May; 379(2):284-98. PubMed ID: 18455186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic evidence for interdomain regulation of the phenol-responsive final sigma54-dependent activator DmpR.
    Ng LC; O'Neill E; Shingler V
    J Biol Chem; 1996 Jul; 271(29):17281-6. PubMed ID: 8663326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ArgR and AhrC are both required for regulation of arginine metabolism in Lactococcus lactis.
    Larsen R; Buist G; Kuipers OP; Kok J
    J Bacteriol; 2004 Feb; 186(4):1147-57. PubMed ID: 14762010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The small untranslated RNA SR1 from the Bacillus subtilis genome is involved in the regulation of arginine catabolism.
    Heidrich N; Chinali A; Gerth U; Brantl S
    Mol Microbiol; 2006 Oct; 62(2):520-36. PubMed ID: 17020585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Bacillus subtilis sigL gene encodes an equivalent of sigma 54 from gram-negative bacteria.
    Débarbouillé M; Martin-Verstraete I; Kunst F; Rapoport G
    Proc Natl Acad Sci U S A; 1991 Oct; 88(20):9092-6. PubMed ID: 1924373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction between ArgR and AhrC controls regulation of arginine metabolism in Lactococcus lactis.
    Larsen R; Kok J; Kuipers OP
    J Biol Chem; 2005 May; 280(19):19319-30. PubMed ID: 15749710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A high-resolution structure of the DNA-binding domain of AhrC, the arginine repressor/activator protein from Bacillus subtilis.
    Garnett JA; Baumberg S; Stockley PG; Phillips SE
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2007 Nov; 63(Pt 11):914-7. PubMed ID: 18007039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diversity, properties and functions of bacterial arginases.
    Hernández VM; Arteaga A; Dunn MF
    FEMS Microbiol Rev; 2021 Nov; 45(6):. PubMed ID: 34160574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and initial characterization of AhrC: the regulator of arginine metabolism genes in Bacillus subtilis.
    Czaplewski LG; North AK; Smith MC; Baumberg S; Stockley PG
    Mol Microbiol; 1992 Jan; 6(2):267-75. PubMed ID: 1312212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two arginine repressors regulate arginine biosynthesis in Lactobacillus plantarum.
    Nicoloff H; Arsène-Ploetze F; Malandain C; Kleerebezem M; Bringel F
    J Bacteriol; 2004 Sep; 186(18):6059-69. PubMed ID: 15342575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.