These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Short strong hydrogen bonds: can they explain enzymic catalysis? Guthrie JP Chem Biol; 1996 Mar; 3(3):163-70. PubMed ID: 8807842 [TBL] [Abstract][Full Text] [Related]
3. The energetics of hydrogen bonds in model systems: implications for enzymatic catalysis. Shan SO; Loh S; Herschlag D Science; 1996 Apr; 272(5258):97-101. PubMed ID: 8600542 [TBL] [Abstract][Full Text] [Related]
4. Forces, bond lengths, and reactivity: fundamental insight into the mechanism of enzyme catalysis. Tonge PJ; Carey PR Biochemistry; 1992 Sep; 31(38):9122-5. PubMed ID: 1390699 [TBL] [Abstract][Full Text] [Related]
5. The low barrier hydrogen bond in enzymatic catalysis. Cleland WW; Frey PA; Gerlt JA J Biol Chem; 1998 Oct; 273(40):25529-32. PubMed ID: 9748211 [No Abstract] [Full Text] [Related]
6. Catalytic role of enzymes: short strong H-bond-induced partial proton shuttles and charge redistributions. Kim KS; Oh KS; Lee JY Proc Natl Acad Sci U S A; 2000 Jun; 97(12):6373-8. PubMed ID: 10841545 [TBL] [Abstract][Full Text] [Related]
7. Energy considerations show that low-barrier hydrogen bonds do not offer a catalytic advantage over ordinary hydrogen bonds. Warshel A; Papazyan A Proc Natl Acad Sci U S A; 1996 Nov; 93(24):13665-70. PubMed ID: 8942991 [TBL] [Abstract][Full Text] [Related]
11. Nuclear magnetic resonance methods for the detection and study of low-barrier hydrogen bonds on enzymes. Mildvan AS; Harris TK; Abeygunawardana C Methods Enzymol; 1999; 308():219-45. PubMed ID: 10507007 [No Abstract] [Full Text] [Related]
12. Hydrogen bonds and proton transfer in general-catalytic transition-state stabilization in enzyme catalysis. Schowen KB; Limbach HH; Denisov GS; Schowen RL Biochim Biophys Acta; 2000 May; 1458(1):43-62. PubMed ID: 10812024 [TBL] [Abstract][Full Text] [Related]
13. Strong, low-barrier hydrogen bonds may be available to enzymes. Graham JD; Buytendyk AM; Wang D; Bowen KH; Collins KD Biochemistry; 2014 Jan; 53(2):344-9. PubMed ID: 24359447 [TBL] [Abstract][Full Text] [Related]
14. Electrophilic coordination catalysis: a summary of previous thought and a new angle of analysis. Houk RJ; Monzingo A; Anslyn EV Acc Chem Res; 2008 Mar; 41(3):401-10. PubMed ID: 18229891 [TBL] [Abstract][Full Text] [Related]
15. Details of the acyl-enzyme intermediate and the oxyanion hole in serine protease catalysis. Whiting AK; Peticolas WL Biochemistry; 1994 Jan; 33(2):552-61. PubMed ID: 8286385 [TBL] [Abstract][Full Text] [Related]
16. The low barrier hydrogen bond (LBHB) proposal revisited: the case of the Asp... His pair in serine proteases. Schutz CN; Warshel A Proteins; 2004 May; 55(3):711-23. PubMed ID: 15103633 [TBL] [Abstract][Full Text] [Related]
17. The strength of dehalogenase-substrate hydrogen bonding correlates with the rate of Meisenheimer intermediate formation. Dong J; Lu X; Wei Y; Luo L; Dunaway-Mariano D; Carey PR Biochemistry; 2003 Aug; 42(31):9482-90. PubMed ID: 12899635 [TBL] [Abstract][Full Text] [Related]
18. Directional character of proton transfer in enzyme catalysis. Wang JH Proc Natl Acad Sci U S A; 1970 Jul; 66(3):874-81. PubMed ID: 4987629 [TBL] [Abstract][Full Text] [Related]
19. On low-barrier hydrogen bonds and enzyme catalysis. Warshel A; Papazyan A; Kollman PA Science; 1995 Jul; 269(5220):102-6. PubMed ID: 7661987 [No Abstract] [Full Text] [Related]
20. Hydrogen-bonding in enzyme catalysis. Fourier-transform infrared detection of ground-state electronic strain in acyl-chymotrypsins and analysis of the kinetic consequences. White AJ; Wharton CW Biochem J; 1990 Sep; 270(3):627-37. PubMed ID: 2241898 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]