These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 9195872)

  • 21. Mapping the interactions of selected antibiotics and their Cu2+ complexes with the antigenomic δ ribozyme.
    Wrzesinski J; Błaszczyk L; Wrońska M; Kasprowicz A; Stokowa-Sołtys K; Nagaj J; Szafraniec M; Kulinski T; Jeżowska-Bojczuk M; Ciesiołka J
    FEBS J; 2013 Jun; 280(11):2652-64. PubMed ID: 23527582
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New developments in structure determination of pseudoknots.
    Hilbers CW; Michiels PJ; Heus HA
    Biopolymers; 1998; 48(2-3):137-53. PubMed ID: 10333742
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vitro selection of RNA lectins: using combinatorial chemistry to interpret ribozyme evolution.
    Lato SM; Boles AR; Ellington AD
    Chem Biol; 1995 May; 2(5):291-303. PubMed ID: 9383431
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro selection of RNA against kanamycin B.
    Kwon M; Chun SM; Jeong S; Yu J
    Mol Cells; 2001 Jun; 11(3):303-11. PubMed ID: 11459219
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RNA aptamers that bind the nucleocapsid protein contain pseudoknots.
    Kim MY; Jeong S
    Mol Cells; 2003 Dec; 16(3):413-7. PubMed ID: 14744035
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural basis for recognition of the RNA major groove in the tau exon 10 splicing regulatory element by aminoglycoside antibiotics.
    Varani L; Spillantini MG; Goedert M; Varani G
    Nucleic Acids Res; 2000 Feb; 28(3):710-9. PubMed ID: 10637322
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A pseudoknot in the 3' non-core region of the glmS ribozyme enhances self-cleavage activity.
    Wilkinson SR; Been MD
    RNA; 2005 Dec; 11(12):1788-94. PubMed ID: 16314452
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro selection of RNAs that undergo autolytic cleavage with Pb2+.
    Pan T; Uhlenbeck OC
    Biochemistry; 1992 Apr; 31(16):3887-95. PubMed ID: 1373649
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Depletion of Escherichia coli 4.5S RNA leads to an increase in the amount of protein elongation factor EF-G associated with ribosomes.
    Nakamura K; Fujii Y; Shibata T; Yamane K
    Eur J Biochem; 1999 Jan; 259(1-2):543-50. PubMed ID: 9914538
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recognition determinants for proteins and antibiotics within 23S rRNA.
    Douthwalte S; Voldborg B; Hansen LH; Rosendahl G; Vester B
    Biochem Cell Biol; 1995; 73(11-12):1179-85. PubMed ID: 8722035
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular dissection of the pseudoknot governing the translational regulation of Escherichia coli ribosomal protein S15.
    Philippe C; Bénard L; Portier C; Westhof E; Ehresmann B; Ehresmann C
    Nucleic Acids Res; 1995 Jan; 23(1):18-28. PubMed ID: 7532857
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative studies of frameshifting and nonframeshifting RNA pseudoknots: a mutational and NMR investigation of pseudoknots derived from the bacteriophage T2 gene 32 mRNA and the retroviral gag-pro frameshift site.
    Wang Y; Wills NM; Du Z; Rangan A; Atkins JF; Gesteland RF; Hoffman DW
    RNA; 2002 Aug; 8(8):981-96. PubMed ID: 12212853
    [TBL] [Abstract][Full Text] [Related]  

  • 33. hnRNP A1 controls HIV-1 mRNA splicing through cooperative binding to intron and exon splicing silencers in the context of a conserved secondary structure.
    Damgaard CK; Tange TO; Kjems J
    RNA; 2002 Nov; 8(11):1401-15. PubMed ID: 12458794
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional analysis of the pseudoknot structure in human telomerase RNA.
    Chen JL; Greider CW
    Proc Natl Acad Sci U S A; 2005 Jun; 102(23):8080-5; discussion 8077-9. PubMed ID: 15849264
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mutational analysis of the RNA pseudoknot involved in efficient ribosomal frameshifting in simian retrovirus-1.
    Sung D; Kang H
    Nucleic Acids Res; 1998 Mar; 26(6):1369-72. PubMed ID: 9490779
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vitro selection analysis of neomycin binding RNAs with a mutagenized pool of variants of the 16S rRNA decoding region.
    Famulok M; Hüttenhofer A
    Biochemistry; 1996 Apr; 35(14):4265-70. PubMed ID: 8605174
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A family of non-classical pseudoknots in influenza A and B viruses.
    Gultyaev AP; Olsthoorn RC
    RNA Biol; 2010; 7(2):125-9. PubMed ID: 20200490
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of the CYT-18 protein binding site at the junction of stacked helices in a group I intron RNA by quantitative binding assays and in vitro selection.
    Saldanha R; Ellington A; Lambowitz AM
    J Mol Biol; 1996 Aug; 261(1):23-42. PubMed ID: 8760500
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lead cleavage sites in the core structure of group I intron-RNA.
    Streicher B; von Ahsen U; Schroeder R
    Nucleic Acids Res; 1993 Jan; 21(2):311-7. PubMed ID: 7680116
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Translational repression by the bacteriophage T4 gene 32 protein involves specific recognition of an RNA pseudoknot structure.
    Shamoo Y; Tam A; Konigsberg WH; Williams KR
    J Mol Biol; 1993 Jul; 232(1):89-104. PubMed ID: 8331672
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.