BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 9195875)

  • 1. Kinetics and mechanism of amyloid formation by the prion protein H1 peptide as determined by time-dependent ESR.
    Lundberg KM; Stenland CJ; Cohen FE; Prusiner SB; Millhauser GL
    Chem Biol; 1997 May; 4(5):345-55. PubMed ID: 9195875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Location of the cross-β structure in prion fibrils: A search by seeding and electron spin resonance spectroscopy.
    Chu BK; Tsai RF; Hung CL; Kuo YH; Chen EH; Chiang YW; Chan SI; Chen RP
    Protein Sci; 2022 Jun; 31(6):e4326. PubMed ID: 35634767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assemblages of prion fragments: novel model systems for understanding amyloid toxicity.
    Satheeshkumar KS; Murali J; Jayakumar R
    J Struct Biol; 2004 Nov; 148(2):176-93. PubMed ID: 15477098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational plasticity of the Gerstmann-Sträussler-Scheinker disease peptide as indicated by its multiple aggregation pathways.
    Natalello A; Prokorov VV; Tagliavini F; Morbin M; Forloni G; Beeg M; Manzoni C; Colombo L; Gobbi M; Salmona M; Doglia SM
    J Mol Biol; 2008 Sep; 381(5):1349-61. PubMed ID: 18619462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational polymorphism of the amyloidogenic peptide homologous to residues 113-127 of the prion protein.
    Satheeshkumar KS; Jayakumar R
    Biophys J; 2003 Jul; 85(1):473-83. PubMed ID: 12829502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative analysis of spin exchange interactions to identify β strand and turn regions in Ure2 prion domain fibrils with site-directed spin labeling.
    Ngo S; Chiang V; Guo Z
    J Struct Biol; 2012 Nov; 180(2):374-81. PubMed ID: 22967940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. X-ray diffraction analysis of scrapie prion: intermediate and folded structures in a peptide containing two putative alpha-helices.
    Inouye H; Kirschner DA
    J Mol Biol; 1997 May; 268(2):375-89. PubMed ID: 9159477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Critical region for amyloid fibril formation of mouse prion protein: unusual amyloidogenic properties of the helix 2 peptide.
    Yamaguchi K; Matsumoto T; Kuwata K
    Biochemistry; 2008 Dec; 47(50):13242-51. PubMed ID: 19053276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissection of conformational conversion events during prion amyloid fibril formation using hydrogen exchange and mass spectrometry.
    Singh J; Udgaonkar JB
    J Mol Biol; 2013 Sep; 425(18):3510-21. PubMed ID: 23811055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structures of amyloid fibrils formed by the prion protein derived peptides PrP(244-249) and PrP(245-250).
    Yau J; Sharpe S
    J Struct Biol; 2012 Nov; 180(2):290-302. PubMed ID: 22929126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic peptides homologous to prion protein residues 106-147 form amyloid-like fibrils in vitro.
    Tagliavini F; Prelli F; Verga L; Giaccone G; Sarma R; Gorevic P; Ghetti B; Passerini F; Ghibaudi E; Forloni G
    Proc Natl Acad Sci U S A; 1993 Oct; 90(20):9678-82. PubMed ID: 8105481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of hydrophobic interactions in amyloidogenesis: example of prion-related polypeptides.
    Tcherkasskaya O; Sanders W; Chynwat V; Davidson EA; Orser CS
    J Biomol Struct Dyn; 2003 Dec; 21(3):353-65. PubMed ID: 14616031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High pressure induces scrapie-like prion protein misfolding and amyloid fibril formation.
    Torrent J; Alvarez-Martinez MT; Harricane MC; Heitz F; Liautard JP; Balny C; Lange R
    Biochemistry; 2004 Jun; 43(22):7162-70. PubMed ID: 15170353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for stepwise formation of amyloid fibrils by the mouse prion protein.
    Jain S; Udgaonkar JB
    J Mol Biol; 2008 Oct; 382(5):1228-41. PubMed ID: 18687339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicted alpha-helical regions of the prion protein when synthesized as peptides form amyloid.
    Gasset M; Baldwin MA; Lloyd DH; Gabriel JM; Holtzman DM; Cohen F; Fletterick R; Prusiner SB
    Proc Natl Acad Sci U S A; 1992 Nov; 89(22):10940-4. PubMed ID: 1438300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How does domain replacement affect fibril formation of the rabbit/human prion proteins.
    Yan X; Huang JJ; Zhou Z; Chen J; Liang Y
    PLoS One; 2014; 9(11):e113238. PubMed ID: 25401497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of prion protein assembly into amyloid.
    Stöhr J; Weinmann N; Wille H; Kaimann T; Nagel-Steger L; Birkmann E; Panza G; Prusiner SB; Eigen M; Riesner D
    Proc Natl Acad Sci U S A; 2008 Feb; 105(7):2409-14. PubMed ID: 18268326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diversity of kinetic pathways in amyloid fibril formation.
    Bellesia G; Shea JE
    J Chem Phys; 2009 Sep; 131(11):111102. PubMed ID: 19778093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The N-terminal region of non-A beta component of Alzheimer's disease amyloid is responsible for its tendency to assume beta-sheet and aggregate to form fibrils.
    El-Agnaf OM; Bodles AM; Guthrie DJ; Harriott P; Irvine GB
    Eur J Biochem; 1998 Nov; 258(1):157-63. PubMed ID: 9851705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prion protein peptides induce alpha-helix to beta-sheet conformational transitions.
    Nguyen J; Baldwin MA; Cohen FE; Prusiner SB
    Biochemistry; 1995 Apr; 34(13):4186-92. PubMed ID: 7703230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.