These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 9195886)
1. The crystal structures of Sinapis alba myrosinase and a covalent glycosyl-enzyme intermediate provide insights into the substrate recognition and active-site machinery of an S-glycosidase. Burmeister WP; Cottaz S; Driguez H; Iori R; Palmieri S; Henrissat B Structure; 1997 May; 5(5):663-75. PubMed ID: 9195886 [TBL] [Abstract][Full Text] [Related]
2. High resolution X-ray crystallography shows that ascorbate is a cofactor for myrosinase and substitutes for the function of the catalytic base. Burmeister WP; Cottaz S; Rollin P; Vasella A; Henrissat B J Biol Chem; 2000 Dec; 275(50):39385-93. PubMed ID: 10978344 [TBL] [Abstract][Full Text] [Related]
3. Mechanism-based inhibition and stereochemistry of glucosinolate hydrolysis by myrosinase. Cottaz S; Henrissat B; Driguez H Biochemistry; 1996 Dec; 35(48):15256-9. PubMed ID: 8952475 [TBL] [Abstract][Full Text] [Related]
4. Protein modeling and active site binding mode interactions of myrosinase-sinigrin in Brassica juncea--an in silico approach. Kumar R; Kumar S; Sangwan S; Yadav IS; Yadav R J Mol Graph Model; 2011 Feb; 29(5):740-6. PubMed ID: 21236711 [TBL] [Abstract][Full Text] [Related]
5. Crystal structure at 1.1 Angstroms resolution of an insect myrosinase from Brevicoryne brassicae shows its close relationship to beta-glucosidases. Husebye H; Arzt S; Burmeister WP; Härtel FV; Brandt A; Rossiter JT; Bones AM Insect Biochem Mol Biol; 2005 Dec; 35(12):1311-20. PubMed ID: 16291087 [TBL] [Abstract][Full Text] [Related]
6. Myrosinase: insights on structural, catalytic, regulatory, and environmental interactions. Bhat R; Vyas D Crit Rev Biotechnol; 2019 Jun; 39(4):508-523. PubMed ID: 30939944 [TBL] [Abstract][Full Text] [Related]
7. Studies on the mechanism of myrosinase. Investigation of the effect of glycosyl acceptors on enzyme activity. Botti MG; Taylor MG; Botting NP J Biol Chem; 1995 Sep; 270(35):20530-5. PubMed ID: 7657629 [TBL] [Abstract][Full Text] [Related]
8. Mechanistic consequences of mutation of active site carboxylates in a retaining beta-1,4-glycanase from Cellulomonas fimi. MacLeod AM; Tull D; Rupitz K; Warren RA; Withers SG Biochemistry; 1996 Oct; 35(40):13165-72. PubMed ID: 8855954 [TBL] [Abstract][Full Text] [Related]
9. The crystal structure of a cyanogenic beta-glucosidase from white clover, a family 1 glycosyl hydrolase. Barrett T; Suresh CG; Tolley SP; Dodson EJ; Hughes MA Structure; 1995 Sep; 3(9):951-60. PubMed ID: 8535788 [TBL] [Abstract][Full Text] [Related]
11. Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase. Joshi MD; Sidhu G; Pot I; Brayer GD; Withers SG; McIntosh LP J Mol Biol; 2000 May; 299(1):255-79. PubMed ID: 10860737 [TBL] [Abstract][Full Text] [Related]
12. Hydrolysis of glucosinolates using nylon-immobilized myrosinase to produce pure bioactive molecules. Leoni O; Iori R; Palmieri S Biotechnol Bioeng; 2000 Jun; 68(6):660-4. PubMed ID: 10799991 [TBL] [Abstract][Full Text] [Related]
13. Crystal structures of Paenibacillus polymyxa beta-glucosidase B complexes reveal the molecular basis of substrate specificity and give new insights into the catalytic machinery of family I glycosidases. Isorna P; Polaina J; Latorre-García L; Cañada FJ; González B; Sanz-Aparicio J J Mol Biol; 2007 Aug; 371(5):1204-18. PubMed ID: 17585934 [TBL] [Abstract][Full Text] [Related]
14. Crystal structure of the catalytic domain of the beta-1,4-glycanase cex from Cellulomonas fimi. White A; Withers SG; Gilkes NR; Rose DR Biochemistry; 1994 Oct; 33(42):12546-52. PubMed ID: 7918478 [TBL] [Abstract][Full Text] [Related]
15. Insights into transition state stabilization of the beta-1,4-glycosidase Cex by covalent intermediate accumulation in active site mutants. Notenboom V; Birsan C; Nitz M; Rose DR; Warren RA; Withers SG Nat Struct Biol; 1998 Sep; 5(9):812-8. PubMed ID: 9731776 [TBL] [Abstract][Full Text] [Related]
16. Characterization and evolution of a myrosinase from the cabbage aphid Brevicoryne brassicae. Jones AM; Winge P; Bones AM; Cole R; Rossiter JT Insect Biochem Mol Biol; 2002 Mar; 32(3):275-84. PubMed ID: 11804799 [TBL] [Abstract][Full Text] [Related]
17. The structure of an inverting GH43 beta-xylosidase from Geobacillus stearothermophilus with its substrate reveals the role of the three catalytic residues. Brüx C; Ben-David A; Shallom-Shezifi D; Leon M; Niefind K; Shoham G; Shoham Y; Schomburg D J Mol Biol; 2006 May; 359(1):97-109. PubMed ID: 16631196 [TBL] [Abstract][Full Text] [Related]
18. Thermal and pressure stability of myrosinase enzymes from black mustard (Brassica nigra L. W.D.J. Koch. var. nigra), brown mustard (Brassica juncea L. Czern. var. juncea) and yellow mustard (Sinapsis alba L. subsp. maire) seeds. Okunade OA; Ghawi SK; Methven L; Niranjan K Food Chem; 2015 Nov; 187():485-90. PubMed ID: 25977054 [TBL] [Abstract][Full Text] [Related]
19. Crystallographic observation of a covalent catalytic intermediate in a beta-glycosidase. White A; Tull D; Johns K; Withers SG; Rose DR Nat Struct Biol; 1996 Feb; 3(2):149-54. PubMed ID: 8564541 [TBL] [Abstract][Full Text] [Related]
20. Isolation and biochemical characterization of a basic myrosinase from ripe Crambe abyssinica seeds, highly specific for epi-progoitrin. Bernardi R; Finiguerra MG; Rossi AA; Palmieri S J Agric Food Chem; 2003 Apr; 51(9):2737-44. PubMed ID: 12696966 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]