These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
44. Structural basis for broad substrate specificity in higher plant beta-D-glucan glucohydrolases. Hrmova M; De Gori R; Smith BJ; Fairweather JK; Driguez H; Varghese JN; Fincher GB Plant Cell; 2002 May; 14(5):1033-52. PubMed ID: 12034895 [TBL] [Abstract][Full Text] [Related]
45. Studies on myrosinases. I. Purification and characterization of a myrosinase from white mustard seed (Sinapis alba, L.). Björkman R; Janson JC Biochim Biophys Acta; 1972 Aug; 276(2):508-18. PubMed ID: 5068825 [No Abstract] [Full Text] [Related]
46. An improved method for the purification of myrosinase and its physicochemical characterization. Pessina A; Thomas RM; Palmieri S; Luisi PL Arch Biochem Biophys; 1990 Aug; 280(2):383-9. PubMed ID: 2369130 [TBL] [Abstract][Full Text] [Related]
47. High-performance liquid chromatography-based method to evaluate kinetics of glucosinolate hydrolysis by Sinapis alba myrosinase. Vastenhout KJ; Tornberg RH; Johnson AL; Amolins MW; Mays JR Anal Biochem; 2014 Nov; 465():105-13. PubMed ID: 25068719 [TBL] [Abstract][Full Text] [Related]
48. The crystal structure of rice (Oryza sativa L.) Os4BGlu12, an oligosaccharide and tuberonic acid glucoside-hydrolyzing β-glucosidase with significant thioglucohydrolase activity. Sansenya S; Opassiri R; Kuaprasert B; Chen CJ; Cairns JR Arch Biochem Biophys; 2011 Jun; 510(1):62-72. PubMed ID: 21521631 [TBL] [Abstract][Full Text] [Related]
49. Structural stability and Sin a 1 anti-epitope antibody binding ability of yellow mustard (Sinapis alba L.) napin during industrial-scale myrosinase inactivation process. Marambe HK; McIntosh TC; Cheng B; Wanasundara JP Food Funct; 2015 Jul; 6(7):2384-95. PubMed ID: 26091085 [TBL] [Abstract][Full Text] [Related]
50. A trapped covalent intermediate as a key catalytic element in the hydrolysis of a GH3 β-glucosidase: An X-ray crystallographic and biochemical study. Hu C; Wang Y; Wang W; Cui W; Jia X; Mayo KH; Zhou Y; Su J; Yuan Y Int J Biol Macromol; 2024 Apr; 265(Pt 2):131131. PubMed ID: 38527679 [TBL] [Abstract][Full Text] [Related]
51. Comparative amino acid sequence analysis of Thermotoga maritima beta-glucosidase (BglA) deduced from the nucleotide sequence of the gene indicates distant relationship between beta-glucosidases of the BGA family and other families of beta-1,4-glycosyl hydrolases. Liebl W; Gabelsberger J; Schleifer KH Mol Gen Genet; 1994 Jan; 242(1):111-5. PubMed ID: 8277941 [TBL] [Abstract][Full Text] [Related]
52. The acid/base catalyst in the exoglucanase/xylanase from Cellulomonas fimi is glutamic acid 127: evidence from detailed kinetic studies of mutants. MacLeod AM; Lindhorst T; Withers SG; Warren RA Biochemistry; 1994 May; 33(20):6371-6. PubMed ID: 7910761 [TBL] [Abstract][Full Text] [Related]
53. Crystal structure of a maltogenic amylase provides insights into a catalytic versatility. Kim JS; Cha SS; Kim HJ; Kim TJ; Ha NC; Oh ST; Cho HS; Cho MJ; Kim MJ; Lee HS; Kim JW; Choi KY; Park KH; Oh BH J Biol Chem; 1999 Sep; 274(37):26279-86. PubMed ID: 10473583 [TBL] [Abstract][Full Text] [Related]
54. Mechanism-based inhibitors of glycosidases: design and applications. Kallemeijn WW; Witte MD; Wennekes T; Aerts JM Adv Carbohydr Chem Biochem; 2014; 71():297-338. PubMed ID: 25480507 [TBL] [Abstract][Full Text] [Related]
55. Structure of the catalytic core of the family F xylanase from Pseudomonas fluorescens and identification of the xylopentaose-binding sites. Harris GW; Jenkins JA; Connerton I; Cummings N; Lo Leggio L; Scott M; Hazlewood GP; Laurie JI; Gilbert HJ; Pickersgill RW Structure; 1994 Nov; 2(11):1107-16. PubMed ID: 7881909 [TBL] [Abstract][Full Text] [Related]
56. Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Henrissat B; Callebaut I; Fabrega S; Lehn P; Mornon JP; Davies G Proc Natl Acad Sci U S A; 1995 Jul; 92(15):7090-4. PubMed ID: 7624375 [TBL] [Abstract][Full Text] [Related]
57. Crystal structure of the beta-glycosidase from the hyperthermophile Thermosphaera aggregans: insights into its activity and thermostability. Chi YI; Martinez-Cruz LA; Jancarik J; Swanson RV; Robertson DE; Kim SH FEBS Lett; 1999 Feb; 445(2-3):375-83. PubMed ID: 10094493 [TBL] [Abstract][Full Text] [Related]
58. A wound- and methyl jasmonate-inducible transcript coding for a myrosinase-associated protein with similarities to an early nodulin. Taipalensuu J; Falk A; Rask L Plant Physiol; 1996 Feb; 110(2):483-91. PubMed ID: 8742330 [TBL] [Abstract][Full Text] [Related]
59. The structure of the exo-beta-(1,3)-glucanase from Candida albicans in native and bound forms: relationship between a pocket and groove in family 5 glycosyl hydrolases. Cutfield SM; Davies GJ; Murshudov G; Anderson BF; Moody PC; Sullivan PA; Cutfield JF J Mol Biol; 1999 Dec; 294(3):771-83. PubMed ID: 10610795 [TBL] [Abstract][Full Text] [Related]
60. Identification of the active site nucleophile in the thermostable beta-glycosidase from the archaeon Sulfolobus solfataricus expressed in Escherichia coli. Febbraio F; Barone R; D'Auria S; Rossi M; Nucci R; Piccialli G; De Napoli L; Orrù S; Pucci P Biochemistry; 1997 Mar; 36(11):3068-75. PubMed ID: 9115982 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]