BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

581 related articles for article (PubMed ID: 9195910)

  • 1. Water and glycerol permeabilities of aquaporins 1-5 and MIP determined quantitatively by expression of epitope-tagged constructs in Xenopus oocytes.
    Yang B; Verkman AS
    J Biol Chem; 1997 Jun; 272(26):16140-6. PubMed ID: 9195910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence against a role of mouse, rat, and two cloned human t1alpha isoforms as a water channel or a regulator of aquaporin-type water channels.
    Ma T; Yang B; Matthay MA; Verkman AS
    Am J Respir Cell Mol Biol; 1998 Jul; 19(1):143-9. PubMed ID: 9651190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of aquaporins in the rat ocular tissue.
    Patil RV; Saito I; Yang X; Wax MB
    Exp Eye Res; 1997 Feb; 64(2):203-9. PubMed ID: 9176054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells.
    Ishibashi K; Sasaki S; Fushimi K; Uchida S; Kuwahara M; Saito H; Furukawa T; Nakajima K; Yamaguchi Y; Gojobori T
    Proc Natl Acad Sci U S A; 1994 Jul; 91(14):6269-73. PubMed ID: 7517548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporation of proteins into (Xenopus) oocytes by proteoliposome microinjection: functional characterization of a novel aquaporin.
    Le Cahérec F; Bron P; Verbavatz JM; Garret A; Morel G; Cavalier A; Bonnec G; Thomas D; Gouranton J; Hubert JF
    J Cell Sci; 1996 Jun; 109 ( Pt 6)():1285-95. PubMed ID: 8799818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selectivity of the renal collecting duct water channel aquaporin-3.
    Echevarría M; Windhager EE; Frindt G
    J Biol Chem; 1996 Oct; 271(41):25079-82. PubMed ID: 8810261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transmembrane helix 5 is critical for the high water permeability of aquaporin.
    Kuwahara M; Shinbo I; Sato K; Terada Y; Marumo F; Sasaki S
    Biochemistry; 1999 Dec; 38(49):16340-6. PubMed ID: 10587459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fourfold reduction of water permeability in inner medullary collecting duct of aquaporin-4 knockout mice.
    Chou CL; Ma T; Yang B; Knepper MA; Verkman AS
    Am J Physiol; 1998 Feb; 274(2):C549-54. PubMed ID: 9486146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the water transporting properties of MIP and AQP1.
    Chandy G; Zampighi GA; Kreman M; Hall JE
    J Membr Biol; 1997 Sep; 159(1):29-39. PubMed ID: 9309208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mercury-sensitive residues and pore site in AQP3 water channel.
    Kuwahara M; Gu Y; Ishibashi K; Marumo F; Sasaki S
    Biochemistry; 1997 Nov; 36(46):13973-8. PubMed ID: 9369468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Urea transporter UT3 functions as an efficient water channel. Direct evidence for a common water/urea pathway.
    Yang B; Verkman AS
    J Biol Chem; 1998 Apr; 273(16):9369-72. PubMed ID: 9545259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water channel properties of major intrinsic protein of lens.
    Mulders SM; Preston GM; Deen PM; Guggino WB; van Os CH; Agre P
    J Biol Chem; 1995 Apr; 270(15):9010-16. PubMed ID: 7536742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery of aquaporins: a breakthrough in research on renal water transport.
    van Lieburg AF; Knoers NV; Deen PM
    Pediatr Nephrol; 1995 Apr; 9(2):228-34. PubMed ID: 7540850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of water and glycerol in aquaporin 3 is gated by H(+).
    Zeuthen T; Klaerke DA
    J Biol Chem; 1999 Jul; 274(31):21631-6. PubMed ID: 10419471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relative CO2/NH3 selectivities of AQP1, AQP4, AQP5, AmtB, and RhAG.
    Musa-Aziz R; Chen LM; Pelletier MF; Boron WF
    Proc Natl Acad Sci U S A; 2009 Mar; 106(13):5406-11. PubMed ID: 19273840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycerol permeability of mutant aquaporin 1 and other AQP-MIP proteins: inhibition studies.
    Abrami L; Berthonaud V; Deen PM; Rousselet G; Tacnet F; Ripoche P
    Pflugers Arch; 1996 Jan; 431(3):408-14. PubMed ID: 8584435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A water channel of the nematode C. elegans and its implications for channel selectivity of MIP proteins.
    Kuwahara M; Ishibashi K; Gu Y; Terada Y; Kohara Y; Marumo F; Sasaki S
    Am J Physiol; 1998 Dec; 275(6):C1459-64. PubMed ID: 9843706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. cAMP-dependent phosphorylation stimulates water permeability of aquaporin-collecting duct water channel protein expressed in Xenopus oocytes.
    Kuwahara M; Fushimi K; Terada Y; Bai L; Marumo F; Sasaki S
    J Biol Chem; 1995 May; 270(18):10384-7. PubMed ID: 7537730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relative CO(2)/NH(3) selectivities of mammalian aquaporins 0-9.
    Geyer RR; Musa-Aziz R; Qin X; Boron WF
    Am J Physiol Cell Physiol; 2013 May; 304(10):C985-94. PubMed ID: 23485707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for a glycerol pathway through aquaporin 1 (CHIP28) channels.
    Abrami L; Tacnet F; Ripoche P
    Pflugers Arch; 1995 Jul; 430(3):447-58. PubMed ID: 7491270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.