BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 9195919)

  • 1. A metal-induced conformational change and activation of HIV-1 integrase.
    Asante-Appiah E; Skalka AM
    J Biol Chem; 1997 Jun; 272(26):16196-205. PubMed ID: 9195919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural determinants of metal-induced conformational changes in HIV-1 integrase.
    Asante-Appiah E; Seeholzer SH; Skalka AM
    J Biol Chem; 1998 Dec; 273(52):35078-87. PubMed ID: 9857042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HIV-1 integrase: structural organization, conformational changes, and catalysis.
    Asante-Appiah E; Skalka AM
    Adv Virus Res; 1999; 52():351-69. PubMed ID: 10384242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structures of catalytic core domains of retroviral integrases and role of divalent cations in enzymatic activity.
    Wlodawer A
    Adv Virus Res; 1999; 52():335-50. PubMed ID: 10384241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Divalent cations stimulate preferential recognition of a viral DNA end by HIV-1 integrase.
    Yi J; Asante-Appiah E; Skalka AM
    Biochemistry; 1999 Jun; 38(26):8458-68. PubMed ID: 10387092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The catalytic domain of avian sarcoma virus integrase: conformation of the active-site residues in the presence of divalent cations.
    Bujacz G; Jaskólski M; Alexandratos J; Wlodawer A; Merkel G; Katz RA; Skalka AM
    Structure; 1996 Jan; 4(1):89-96. PubMed ID: 8805516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of a two-domain fragment of HIV-1 integrase: implications for domain organization in the intact protein.
    Wang JY; Ling H; Yang W; Craigie R
    EMBO J; 2001 Dec; 20(24):7333-43. PubMed ID: 11743009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The solution structure of the amino-terminal HHCC domain of HIV-2 integrase: a three-helix bundle stabilized by zinc.
    Eijkelenboom AP; van den Ent FM; Vos A; Doreleijers JF; Hård K; Tullius TD; Plasterk RH; Kaptein R; Boelens R
    Curr Biol; 1997 Oct; 7(10):739-46. PubMed ID: 9368756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structures of the catalytic domain of HIV-1 integrase free and complexed with its metal cofactor: high level of similarity of the active site with other viral integrases.
    Maignan S; Guilloteau JP; Zhou-Liu Q; Clément-Mella C; Mikol V
    J Mol Biol; 1998 Sep; 282(2):359-68. PubMed ID: 9735293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of different divalent cations to the active site of avian sarcoma virus integrase and their effects on enzymatic activity.
    Bujacz G; Alexandratos J; Wlodawer A; Merkel G; Andrake M; Katz RA; Skalka AM
    J Biol Chem; 1997 Jul; 272(29):18161-8. PubMed ID: 9218451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping the epitope of an inhibitory monoclonal antibody to the C-terminal DNA-binding domain of HIV-1 integrase.
    Yi J; Cheng H; Andrake MD; Dunbrack RL; Roder H; Skalka AM
    J Biol Chem; 2002 Apr; 277(14):12164-74. PubMed ID: 11805085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of metal ions in catalysis by HIV integrase analyzed using a quantitative PCR disintegration assay.
    Diamond TL; Bushman FD
    Nucleic Acids Res; 2006; 34(21):6116-25. PubMed ID: 17085478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mode of inhibition of HIV-1 Integrase by a C-terminal domain-specific monoclonal antibody.
    Ramcharan J; Colleluori DM; Merkel G; Andrake MD; Skalka AM
    Retrovirology; 2006 Jun; 3():34. PubMed ID: 16790058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determinants of Mg2+-dependent activities of recombinant human immunodeficiency virus type 1 integrase.
    Leh H; Brodin P; Bischerour J; Deprez E; Tauc P; Brochon JC; LeCam E; Coulaud D; Auclair C; Mouscadet JF
    Biochemistry; 2000 Aug; 39(31):9285-94. PubMed ID: 10924121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The conformational feasibility for the formation of reaching dimer in ASV and HIV integrase: a molecular dynamics study.
    Balasubramanian S; Rajagopalan M; Bojja RS; Skalka AM; Andrake MD; Ramaswamy A
    J Biomol Struct Dyn; 2017 Dec; 35(16):3469-3485. PubMed ID: 27835934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of recombinant integrase of human immunodeficiency virus type 1 (isolate Bru).
    Semenova EA; Gashnikova NM; Il'ina TV; Pronyaeva TR; Pokrovsky AG
    Biochemistry (Mosc); 2003 Sep; 68(9):988-93. PubMed ID: 14606941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of the human immunodeficiency virus type 1 integrase by guanosine quartet structures.
    Mazumder A; Neamati N; Ojwang JO; Sunder S; Rando RF; Pommier Y
    Biochemistry; 1996 Oct; 35(43):13762-71. PubMed ID: 8901518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of the EGF receptor tyrosine kinase by divalent metal ions: comparison of holoreceptor and isolated kinase domain properties.
    Koland JG; Cerione RA
    Biochim Biophys Acta; 1990 May; 1052(3):489-98. PubMed ID: 2354210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of metal cofactors in enzyme regulation. Differences in the regulatory properties of the Escherichia coli nicotinamide adenine dinucleotide phosphate specific malic enzyme, depending on whether magnesium ion or manganese ion serves as divalent cation.
    Brown DA; Cook RA
    Biochemistry; 1981 Apr; 20(9):2503-12. PubMed ID: 7016178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal-dependent inhibition of HIV-1 integrase by beta-diketo acids and resistance of the soluble double-mutant (F185K/C280S).
    Marchand C; Johnson AA; Karki RG; Pais GC; Zhang X; Cowansage K; Patel TA; Nicklaus MC; Burke TR; Pommier Y
    Mol Pharmacol; 2003 Sep; 64(3):600-9. PubMed ID: 12920196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.