These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 9196897)

  • 1. Microgravity tissue engineering.
    Freed LE; Vunjak-Novakovic G
    In Vitro Cell Dev Biol Anim; 1997 May; 33(5):381-5. PubMed ID: 9196897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cultivation of cell-polymer tissue constructs in simulated microgravity.
    Freed LE; Vunjak-Novakovic G
    Biotechnol Bioeng; 1995 May; 46(4):306-13. PubMed ID: 18623317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage.
    Vunjak-Novakovic G; Martin I; Obradovic B; Treppo S; Grodzinsky AJ; Langer R; Freed LE
    J Orthop Res; 1999 Jan; 17(1):130-8. PubMed ID: 10073657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioreactors mediate the effectiveness of tissue engineering scaffolds.
    Pei M; Solchaga LA; Seidel J; Zeng L; Vunjak-Novakovic G; Caplan AI; Freed LE
    FASEB J; 2002 Oct; 16(12):1691-4. PubMed ID: 12207008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor.
    Sikavitsas VI; Bancroft GN; Mikos AG
    J Biomed Mater Res; 2002 Oct; 62(1):136-48. PubMed ID: 12124795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishment of three-dimensional tissue-engineered bone constructs under microgravity-simulated conditions.
    Jin F; Zhang Y; Xuan K; He D; Deng T; Tang L; Lu W; Duan Y
    Artif Organs; 2010 Feb; 34(2):118-25. PubMed ID: 19817729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue engineering of human cartilage in bioreactors using single and composite cell-seeded scaffolds.
    Mahmoudifar N; Doran PM
    Biotechnol Bioeng; 2005 Aug; 91(3):338-55. PubMed ID: 15959891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue engineering of cartilage in space.
    Freed LE; Langer R; Martin I; Pellis NR; Vunjak-Novakovic G
    Proc Natl Acad Sci U S A; 1997 Dec; 94(25):13885-90. PubMed ID: 9391122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone and cartilage tissue constructs grown using human bone marrow stromal cells, silk scaffolds and rotating bioreactors.
    Marolt D; Augst A; Freed LE; Vepari C; Fajardo R; Patel N; Gray M; Farley M; Kaplan D; Vunjak-Novakovic G
    Biomaterials; 2006 Dec; 27(36):6138-49. PubMed ID: 16895736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Simulated Microgravity and Hydrostatic Pressure for Chondrogenesis of hASC.
    Mellor LF; Steward AJ; Nordberg RC; Taylor MA; Loboa EG
    Aerosp Med Hum Perform; 2017 Apr; 88(4):377-384. PubMed ID: 28518000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of the mechanical properties of tissue engineered cartilage.
    Martin I; Obradovic B; Treppo S; Grodzinsky AJ; Langer R; Freed LE; Vunjak-Novakovic G
    Biorheology; 2000; 37(1-2):141-7. PubMed ID: 10912186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cartilaginous tissue formation from bone marrow cells using rotating wall vessel (RWV) bioreactor.
    Ohyabu Y; Kida N; Kojima H; Taguchi T; Tanaka J; Uemura T
    Biotechnol Bioeng; 2006 Dec; 95(5):1003-8. PubMed ID: 16986169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue Engineering Under Microgravity Conditions-Use of Stem Cells and Specialized Cells.
    Grimm D; Egli M; Krüger M; Riwaldt S; Corydon TJ; Kopp S; Wehland M; Wise P; Infanger M; Mann V; Sundaresan A
    Stem Cells Dev; 2018 Jun; 27(12):787-804. PubMed ID: 29596037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaffold-free Tissue Formation Under Real and Simulated Microgravity Conditions.
    Aleshcheva G; Bauer J; Hemmersbach R; Slumstrup L; Wehland M; Infanger M; Grimm D
    Basic Clin Pharmacol Toxicol; 2016 Oct; 119 Suppl 3():26-33. PubMed ID: 26826674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neocartilage formation in 1 g, simulated, and microgravity environments: implications for tissue engineering.
    Stamenković V; Keller G; Nesic D; Cogoli A; Grogan SP
    Tissue Eng Part A; 2010 May; 16(5):1729-36. PubMed ID: 20141387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microgravity cultivation of cells and tissues.
    Freed LE; Pellis N; Searby N; de Luis J; Preda C; Bordonaro J; Vunjak-Novakovic G
    Gravit Space Biol Bull; 1999 May; 12(2):57-66. PubMed ID: 11541784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wavy-walled bioreactor supports increased cell proliferation and matrix deposition in engineered cartilage constructs.
    Bueno EM; Bilgen B; Barabino GA
    Tissue Eng; 2005; 11(11-12):1699-709. PubMed ID: 16411815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulated conditions of microgravity suppress progesterone production by luteal cells of the pregnant rat.
    Bhat GK; Yang H; Sridaran R
    J Gravit Physiol; 2001 Dec; 8(2):57-66. PubMed ID: 12365451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of rat articular cartilage on porous sponges: effects of tgf-beta 1 and microgravity bioreactor culture.
    Emin N; Koç A; Durkut S; Elçin AE; Elçin YM
    Artif Cells Blood Substit Immobil Biotechnol; 2008; 36(2):123-37. PubMed ID: 18437589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neonatal rat heart cells cultured in simulated microgravity.
    Akins RE; Schroedl NA; Gonda SR; Hartzell CR
    In Vitro Cell Dev Biol Anim; 1997 May; 33(5):337-43. PubMed ID: 9196891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.