BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 9196897)

  • 1. Microgravity tissue engineering.
    Freed LE; Vunjak-Novakovic G
    In Vitro Cell Dev Biol Anim; 1997 May; 33(5):381-5. PubMed ID: 9196897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cultivation of cell-polymer tissue constructs in simulated microgravity.
    Freed LE; Vunjak-Novakovic G
    Biotechnol Bioeng; 1995 May; 46(4):306-13. PubMed ID: 18623317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage.
    Vunjak-Novakovic G; Martin I; Obradovic B; Treppo S; Grodzinsky AJ; Langer R; Freed LE
    J Orthop Res; 1999 Jan; 17(1):130-8. PubMed ID: 10073657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioreactors mediate the effectiveness of tissue engineering scaffolds.
    Pei M; Solchaga LA; Seidel J; Zeng L; Vunjak-Novakovic G; Caplan AI; Freed LE
    FASEB J; 2002 Oct; 16(12):1691-4. PubMed ID: 12207008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor.
    Sikavitsas VI; Bancroft GN; Mikos AG
    J Biomed Mater Res; 2002 Oct; 62(1):136-48. PubMed ID: 12124795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishment of three-dimensional tissue-engineered bone constructs under microgravity-simulated conditions.
    Jin F; Zhang Y; Xuan K; He D; Deng T; Tang L; Lu W; Duan Y
    Artif Organs; 2010 Feb; 34(2):118-25. PubMed ID: 19817729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue engineering of human cartilage in bioreactors using single and composite cell-seeded scaffolds.
    Mahmoudifar N; Doran PM
    Biotechnol Bioeng; 2005 Aug; 91(3):338-55. PubMed ID: 15959891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue engineering of cartilage in space.
    Freed LE; Langer R; Martin I; Pellis NR; Vunjak-Novakovic G
    Proc Natl Acad Sci U S A; 1997 Dec; 94(25):13885-90. PubMed ID: 9391122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone and cartilage tissue constructs grown using human bone marrow stromal cells, silk scaffolds and rotating bioreactors.
    Marolt D; Augst A; Freed LE; Vepari C; Fajardo R; Patel N; Gray M; Farley M; Kaplan D; Vunjak-Novakovic G
    Biomaterials; 2006 Dec; 27(36):6138-49. PubMed ID: 16895736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Simulated Microgravity and Hydrostatic Pressure for Chondrogenesis of hASC.
    Mellor LF; Steward AJ; Nordberg RC; Taylor MA; Loboa EG
    Aerosp Med Hum Perform; 2017 Apr; 88(4):377-384. PubMed ID: 28518000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of the mechanical properties of tissue engineered cartilage.
    Martin I; Obradovic B; Treppo S; Grodzinsky AJ; Langer R; Freed LE; Vunjak-Novakovic G
    Biorheology; 2000; 37(1-2):141-7. PubMed ID: 10912186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cartilaginous tissue formation from bone marrow cells using rotating wall vessel (RWV) bioreactor.
    Ohyabu Y; Kida N; Kojima H; Taguchi T; Tanaka J; Uemura T
    Biotechnol Bioeng; 2006 Dec; 95(5):1003-8. PubMed ID: 16986169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue Engineering Under Microgravity Conditions-Use of Stem Cells and Specialized Cells.
    Grimm D; Egli M; Krüger M; Riwaldt S; Corydon TJ; Kopp S; Wehland M; Wise P; Infanger M; Mann V; Sundaresan A
    Stem Cells Dev; 2018 Jun; 27(12):787-804. PubMed ID: 29596037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaffold-free Tissue Formation Under Real and Simulated Microgravity Conditions.
    Aleshcheva G; Bauer J; Hemmersbach R; Slumstrup L; Wehland M; Infanger M; Grimm D
    Basic Clin Pharmacol Toxicol; 2016 Oct; 119 Suppl 3():26-33. PubMed ID: 26826674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neocartilage formation in 1 g, simulated, and microgravity environments: implications for tissue engineering.
    Stamenković V; Keller G; Nesic D; Cogoli A; Grogan SP
    Tissue Eng Part A; 2010 May; 16(5):1729-36. PubMed ID: 20141387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microgravity cultivation of cells and tissues.
    Freed LE; Pellis N; Searby N; de Luis J; Preda C; Bordonaro J; Vunjak-Novakovic G
    Gravit Space Biol Bull; 1999 May; 12(2):57-66. PubMed ID: 11541784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wavy-walled bioreactor supports increased cell proliferation and matrix deposition in engineered cartilage constructs.
    Bueno EM; Bilgen B; Barabino GA
    Tissue Eng; 2005; 11(11-12):1699-709. PubMed ID: 16411815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulated conditions of microgravity suppress progesterone production by luteal cells of the pregnant rat.
    Bhat GK; Yang H; Sridaran R
    J Gravit Physiol; 2001 Dec; 8(2):57-66. PubMed ID: 12365451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of rat articular cartilage on porous sponges: effects of tgf-beta 1 and microgravity bioreactor culture.
    Emin N; Koç A; Durkut S; Elçin AE; Elçin YM
    Artif Cells Blood Substit Immobil Biotechnol; 2008; 36(2):123-37. PubMed ID: 18437589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neonatal rat heart cells cultured in simulated microgravity.
    Akins RE; Schroedl NA; Gonda SR; Hartzell CR
    In Vitro Cell Dev Biol Anim; 1997 May; 33(5):337-43. PubMed ID: 9196891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.