These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Ca2+/calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Derkach V; Barria A; Soderling TR Proc Natl Acad Sci U S A; 1999 Mar; 96(6):3269-74. PubMed ID: 10077673 [TBL] [Abstract][Full Text] [Related]
3. Memory consolidation induces N-methyl-D-aspartic acid-receptor- and Ca2+/calmodulin-dependent protein kinase II-dependent modifications in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor properties. Bevilaqua LR; Medina JH; Izquierdo I; Cammarota M Neuroscience; 2005; 136(2):397-403. PubMed ID: 16182449 [TBL] [Abstract][Full Text] [Related]
4. Attenuation of paired-pulse facilitation associated with synaptic potentiation mediated by postsynaptic mechanisms. Wang JH; Kelly PT J Neurophysiol; 1997 Nov; 78(5):2707-16. PubMed ID: 9356420 [TBL] [Abstract][Full Text] [Related]
5. Identification of the Ca2+/calmodulin-dependent protein kinase II regulatory phosphorylation site in the alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate-type glutamate receptor. Barria A; Derkach V; Soderling T J Biol Chem; 1997 Dec; 272(52):32727-30. PubMed ID: 9407043 [TBL] [Abstract][Full Text] [Related]
6. Involvement of calcium/calmodulin-dependent protein kinases in the setting of a molecular switch involved in hippocampal LTP. Bortolotto ZA; Collingridge GL Neuropharmacology; 1998; 37(4-5):535-44. PubMed ID: 9704994 [TBL] [Abstract][Full Text] [Related]
7. Activity-dependent long-term potentiation of intrinsic excitability in hippocampal CA1 pyramidal neurons. Xu J; Kang N; Jiang L; Nedergaard M; Kang J J Neurosci; 2005 Feb; 25(7):1750-60. PubMed ID: 15716411 [TBL] [Abstract][Full Text] [Related]
8. NMDA receptor-mediated immediate Ser831 phosphorylation of GluR1 through CaMKIIalpha in rat hippocampus during early global ischemia. Fu XZ; Zhang QG; Meng FJ; Zhang GY Neurosci Res; 2004 Jan; 48(1):85-91. PubMed ID: 14687884 [TBL] [Abstract][Full Text] [Related]
9. Learning-specific, time-dependent increases in hippocampal Ca2+/calmodulin-dependent protein kinase II activity and AMPA GluR1 subunit immunoreactivity. Cammarota M; Bernabeu R; Levi De Stein M; Izquierdo I; Medina JH Eur J Neurosci; 1998 Aug; 10(8):2669-76. PubMed ID: 9767396 [TBL] [Abstract][Full Text] [Related]
10. Input- and subunit-specific AMPA receptor trafficking underlying long-term potentiation at hippocampal CA3 synapses. Kakegawa W; Tsuzuki K; Yoshida Y; Kameyama K; Ozawa S Eur J Neurosci; 2004 Jul; 20(1):101-10. PubMed ID: 15245483 [TBL] [Abstract][Full Text] [Related]
11. Ca2+/calmodulin-dependent protein kinase II-dependent long-term potentiation in the rat suprachiasmatic nucleus and its inhibition by melatonin. Fukunaga K; Horikawa K; Shibata S; Takeuchi Y; Miyamoto E J Neurosci Res; 2002 Dec; 70(6):799-807. PubMed ID: 12444602 [TBL] [Abstract][Full Text] [Related]
12. Regulation of synaptic facilitation by postsynaptic Ca2+/CaM pathways in hippocampal CA1 neurons. Wang JH; Kelly PT J Neurophysiol; 1996 Jul; 76(1):276-86. PubMed ID: 8836224 [TBL] [Abstract][Full Text] [Related]
13. Learning mechanisms: the case for CaM-KII. Lisman J; Malenka RC; Nicoll RA; Malinow R Science; 1997 Jun; 276(5321):2001-2. PubMed ID: 9221509 [No Abstract] [Full Text] [Related]
14. Amyloid beta prevents activation of calcium/calmodulin-dependent protein kinase II and AMPA receptor phosphorylation during hippocampal long-term potentiation. Zhao D; Watson JB; Xie CW J Neurophysiol; 2004 Nov; 92(5):2853-8. PubMed ID: 15212428 [TBL] [Abstract][Full Text] [Related]
15. Expression mechanisms underlying NMDA receptor-dependent long-term potentiation. Nicoll RA; Malenka RC Ann N Y Acad Sci; 1999 Apr; 868():515-25. PubMed ID: 10414328 [TBL] [Abstract][Full Text] [Related]
16. CaM kinase II in long-term potentiation. Fukunaga K; Muller D; Miyamoto E Neurochem Int; 1996 Apr; 28(4):343-58. PubMed ID: 8740440 [TBL] [Abstract][Full Text] [Related]
17. Calcium/calmodulin-dependent kinase II and long-term potentiation enhance synaptic transmission by the same mechanism. Lledo PM; Hjelmstad GO; Mukherji S; Soderling TR; Malenka RC; Nicoll RA Proc Natl Acad Sci U S A; 1995 Nov; 92(24):11175-9. PubMed ID: 7479960 [TBL] [Abstract][Full Text] [Related]
18. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Hayashi Y; Shi SH; Esteban JA; Piccini A; Poncer JC; Malinow R Science; 2000 Mar; 287(5461):2262-7. PubMed ID: 10731148 [TBL] [Abstract][Full Text] [Related]
19. Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Lee HK; Barbarosie M; Kameyama K; Bear MF; Huganir RL Nature; 2000 Jun; 405(6789):955-9. PubMed ID: 10879537 [TBL] [Abstract][Full Text] [Related]
20. Activation of silent synapses by rapid activity-dependent synaptic recruitment of AMPA receptors. Liao D; Scannevin RH; Huganir R J Neurosci; 2001 Aug; 21(16):6008-17. PubMed ID: 11487624 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]