These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
529 related articles for article (PubMed ID: 9197413)
1. Studies on spontaneous promoter-up mutations in the transcriptional activator-encoding gene phIR and their effects on the degradation of phenol in Escherichia coli and Pseudomonas putida. Burchhardt G; Schmidt I; Cuypers H; Petruschka L; Völker A; Herrmann H Mol Gen Genet; 1997 May; 254(5):539-47. PubMed ID: 9197413 [TBL] [Abstract][Full Text] [Related]
2. Aromatic effector activation of the NtrC-like transcriptional regulator PhhR limits the catabolic potential of the (methyl)phenol degradative pathway it controls. Ng LC; Poh CL; Shingler V J Bacteriol; 1995 Mar; 177(6):1485-90. PubMed ID: 7883704 [TBL] [Abstract][Full Text] [Related]
3. Carbon catabolite repression of phenol degradation in Pseudomonas putida is mediated by the inhibition of the activator protein PhlR. Müller C; Petruschka L; Cuypers H; Burchhardt G; Herrmann H J Bacteriol; 1996 Apr; 178(7):2030-6. PubMed ID: 8606180 [TBL] [Abstract][Full Text] [Related]
4. Regulation of the catechol 1,2-dioxygenase- and phenol monooxygenase-encoding pheBA operon in Pseudomonas putida PaW85. Kasak L; Hôrak R; Nurk A; Talvik K; Kivisaar M J Bacteriol; 1993 Dec; 175(24):8038-42. PubMed ID: 8253692 [TBL] [Abstract][Full Text] [Related]
5. Cloning and sequences of the first eight genes of the chromosomally encoded (methyl) phenol degradation pathway from Pseudomonas putida P35X. Ng LC; Shingler V; Sze CC; Poh CL Gene; 1994 Dec; 151(1-2):29-36. PubMed ID: 7828892 [TBL] [Abstract][Full Text] [Related]
6. Cloning and nucleotide sequence of the gene encoding the positive regulator (DmpR) of the phenol catabolic pathway encoded by pVI150 and identification of DmpR as a member of the NtrC family of transcriptional activators. Shingler V; Bartilson M; Moore T J Bacteriol; 1993 Mar; 175(6):1596-604. PubMed ID: 8449869 [TBL] [Abstract][Full Text] [Related]
7. Molecular characterization of the 4-hydroxyphenylacetate catabolic pathway of Escherichia coli W: engineering a mobile aromatic degradative cluster. Prieto MA; Díaz E; García JL J Bacteriol; 1996 Jan; 178(1):111-20. PubMed ID: 8550403 [TBL] [Abstract][Full Text] [Related]
8. Cloning and sequencing of a phenol hydroxylase gene of Pseudomonas pseudoalcaligenes strain MH1: a bacterium able to mineralize various aromatic compounds. Zouari H; Moukha S; Labat M; Sayadi S Appl Biochem Biotechnol; 2002; 102-103(1-6):261-76. PubMed ID: 12396129 [TBL] [Abstract][Full Text] [Related]
9. Localization and organization of phenol degradation genes of Pseudomonas putida strain H. Herrmann H; Müller C; Schmidt I; Mahnke J; Petruschka L; Hahnke K Mol Gen Genet; 1995 Apr; 247(2):240-6. PubMed ID: 7753034 [TBL] [Abstract][Full Text] [Related]
10. Cross-regulation by XylR and DmpR activators of Pseudomonas putida suggests that transcriptional control of biodegradative operons evolves independently of catabolic genes. Fernández S; Shingler V; De Lorenzo V J Bacteriol; 1994 Aug; 176(16):5052-8. PubMed ID: 8051017 [TBL] [Abstract][Full Text] [Related]
11. Expression, inducer spectrum, domain structure, and function of MopR, the regulator of phenol degradation in Acinetobacter calcoaceticus NCIB8250. Schirmer F; Ehrt S; Hillen W J Bacteriol; 1997 Feb; 179(4):1329-36. PubMed ID: 9023219 [TBL] [Abstract][Full Text] [Related]
12. Molecular level biodegradation of phenol and its derivatives through dmp operon of Pseudomonas putida: A bio-molecular modeling and docking analysis. Ray S; Banerjee A J Environ Sci (China); 2015 Oct; 36():144-51. PubMed ID: 26456616 [TBL] [Abstract][Full Text] [Related]
13. Iron regulation of siderophore biosynthesis and transport in Pseudomonas putida WCS358: involvement of a transcriptional activator and of the Fur protein. Venturi V; Ottevanger C; Bracke M; Weisbeek P Mol Microbiol; 1995 Mar; 15(6):1081-93. PubMed ID: 7623664 [TBL] [Abstract][Full Text] [Related]
14. Activation and repression of transcription at the double tandem divergent promoters for the xylR and xylS genes of the TOL plasmid of Pseudomonas putida. Marqués S; Gallegos MT; Manzanera M; Holtel A; Timmis KN; Ramos JL J Bacteriol; 1998 Jun; 180(11):2889-94. PubMed ID: 9603877 [TBL] [Abstract][Full Text] [Related]
15. Growth medium composition-determined regulatory mechanisms are superimposed on CatR-mediated transcription from the pheBA and catBCA promoters in Pseudomonas putida. Tover A; Ojangu EL; Kivisaar M Microbiology (Reading); 2001 Aug; 147(Pt 8):2149-2156. PubMed ID: 11495992 [TBL] [Abstract][Full Text] [Related]
16. Transcriptional activation of the catechol and chlorocatechol operons: variations on a theme. McFall SM; Chugani SA; Chakrabarty AM Gene; 1998 Nov; 223(1-2):257-67. PubMed ID: 9858745 [TBL] [Abstract][Full Text] [Related]
17. An aromatic effector specificity mutant of the transcriptional regulator DmpR overcomes the growth constraints of Pseudomonas sp. strain CF600 on para-substituted methylphenols. Pavel H; Forsman M; Shingler V J Bacteriol; 1994 Dec; 176(24):7550-7. PubMed ID: 8002579 [TBL] [Abstract][Full Text] [Related]
18. In-vivo-generated fusion promoters in Pseudomonas putida. Nurk A; Tamm A; Hôrak R; Kivisaar M Gene; 1993 May; 127(1):23-9. PubMed ID: 8387446 [TBL] [Abstract][Full Text] [Related]
19. Critical nucleotides in the interaction of CatR with the pheBA promoter: conservation of the CatR-mediated regulation mechanisms between the pheBA and catBCA operons. Tover A; Zernant J; Chugani SA; Chakrabarty AM; Kivisaar M Microbiology (Reading); 2000 Jan; 146 ( Pt 1)():173-183. PubMed ID: 10658664 [TBL] [Abstract][Full Text] [Related]
20. Transcriptional activation of quinoline degradation operons of Pseudomonas putida 86 by the AraC/XylS-type regulator OxoS and cross-regulation of the PqorM promoter by XylS. Carl B; Fetzner S Appl Environ Microbiol; 2005 Dec; 71(12):8618-26. PubMed ID: 16332855 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]