These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 919909)

  • 21. The visual pigment sensitivity hypothesis: further evidence from fishes of varying habitats.
    Crescitelli F; McFall-Ngai M; Horwitz J
    J Comp Physiol A; 1985 Oct; 157(3):323-33. PubMed ID: 3837092
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rhodopsin population genetics and local adaptation: variable dim-light vision in sand gobies is illuminated.
    Ebert D; Andrew RL
    Mol Ecol; 2009 Oct; 18(20):4140-2. PubMed ID: 19857228
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Temperature decolorization of the rhodopsin of bulls and Theragra chalcogramma fish].
    Tiurin VA; Korchagin VP; Shukoliukov SA; Fedosov IuV
    Zh Evol Biokhim Fiziol; 1977; 13(1):18-23. PubMed ID: 868374
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Visual pigment composition in zebrafish: Evidence for a rhodopsin-porphyropsin interchange system.
    Allison WT; Haimberger TJ; Hawryshyn CW; Temple SE
    Vis Neurosci; 2004; 21(6):945-52. PubMed ID: 15733349
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Long-wave sensitivity in the masked greenling (Hexagrammos octogrammus), a shallow-water marine fish.
    Kondrashev SL
    Vision Res; 2008 Sep; 48(21):2269-74. PubMed ID: 18675840
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Photochromism of visual pigments. III. Comparative study of photoconversions in bovine and frog rhodopsin].
    Krongauz VA; Shifrina RR; Fedorovich IB; OstrovskiÄ­ MA
    Biofizika; 1975; 20(3):426-31. PubMed ID: 1138949
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Ecological groups of flatfishes of Peter the Great Bay (Japan sea) based on the analysis od species composition of myxosporidian parasites].
    Antonenko DV; Aseeva NL
    Parazitologiia; 2010; 44(2):146-52. PubMed ID: 20536006
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rhodopsins from three frog and toad species: sequences and functional comparisons.
    Fyhrquist N; Donner K; Hargrave PA; McDowell JH; Popp MP; Smith WC
    Exp Eye Res; 1998 Mar; 66(3):295-305. PubMed ID: 9533857
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Amino acid residues responsible for the meta-III decay rates in rod and cone visual pigments.
    Kuwayama S; Imai H; Morizumi T; Shichida Y
    Biochemistry; 2005 Feb; 44(6):2208-15. PubMed ID: 15697246
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The molecular basis of adaptive evolution of squirrelfish rhodopsins.
    Yokoyama S; Takenaka N
    Mol Biol Evol; 2004 Nov; 21(11):2071-8. PubMed ID: 15269277
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular properties of rod and cone visual pigments from purified chicken cone pigments to mouse rhodopsin in situ.
    Imai H; Kuwayama S; Onishi A; Morizumi T; Chisaka O; Shichida Y
    Photochem Photobiol Sci; 2005 Sep; 4(9):667-74. PubMed ID: 16121275
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Possible determination of the structural organization of bacterial and animal rhodopsins by the hydrophobicity of amino acid residues].
    TarakhovskiÄ­ IuS
    Biofizika; 1984; 29(3):383-8. PubMed ID: 6466718
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Thermal stability of rhodopsins and opsins in warm- and cold-blooded vertebrates].
    Berman AL; Suvorov SA; Parnova RG; Gracheva OA; Rychkova MP
    Zh Evol Biokhim Fiziol; 1981; 17(6):547-55. PubMed ID: 6459690
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Calorimetric study of thermal denaturation of vertebrate visual pigments.
    Shnyrov VL; Berman AL
    Biomed Biochim Acta; 1988; 47(4-5):355-62. PubMed ID: 3266468
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Fluorescence of rhodopsins and its relation to primary processes of light energy transformation].
    Sineshchekov VA; Litvin FF
    Biofizika; 1987; 32(3):540-55. PubMed ID: 3304432
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modulation of thermal noise and spectral sensitivity in Lake Baikal cottoid fish rhodopsins.
    Luk HL; Bhattacharyya N; Montisci F; Morrow JM; Melaccio F; Wada A; Sheves M; Fanelli F; Chang BS; Olivucci M
    Sci Rep; 2016 Dec; 6():38425. PubMed ID: 27934935
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatial Dynamics of Demersal Fish Assemblages off the Korean Coast in the East Sea.
    Park JM; Lee CI; Park JW; Jung HK; Han IS
    Animals (Basel); 2024 May; 14(11):. PubMed ID: 38891659
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The thermal decomposition of visual pigments as a compensation law process.
    Rosenberg B; Williams TP
    Vision Res; 1971 Jun; 11(6):613-5. PubMed ID: 5105175
    [No Abstract]   [Full Text] [Related]  

  • 39. The effect of temperature on rhodopsin-porphyropsin ratios in a fish.
    Allen DM; McFarland WN
    Vision Res; 1973 Jul; 13(7):1303-9. PubMed ID: 4722802
    [No Abstract]   [Full Text] [Related]  

  • 40. Visual pigments of deep-sea fish.
    DENTON EJ; WARREN FJ
    Nature; 1956 Nov; 178(4541):1059. PubMed ID: 13378532
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.