BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 9199775)

  • 21. The recombinant dihydropyridine receptor II-III loop and partly structured 'C' region peptides modify cardiac ryanodine receptor activity.
    Dulhunty AF; Karunasekara Y; Curtis SM; Harvey PJ; Board PG; Casarotto MG
    Biochem J; 2005 Feb; 385(Pt 3):803-13. PubMed ID: 15511220
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Measurements of Ca2+ entry and sarcoplasmic reticulum Ca2+ content during the cardiac cycle in guinea pig and rat ventricular myocytes.
    Terracciano CM; MacLeod KT
    Biophys J; 1997 Mar; 72(3):1319-26. PubMed ID: 9138577
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ca2+-dependent excitation-contraction coupling triggered by the heterologous cardiac/brain DHPR beta2a-subunit in skeletal myotubes.
    Sheridan DC; Carbonneau L; Ahern CA; Nataraj P; Coronado R
    Biophys J; 2003 Dec; 85(6):3739-57. PubMed ID: 14645065
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inactivation of L-type calcium channels in cardiomyocytes. Experimental and theoretical approaches.
    Kubalová Z
    Gen Physiol Biophys; 2003 Dec; 22(4):441-54. PubMed ID: 15113117
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Voltage-dependent blockade of diverse types of voltage-gated Ca2+ channels expressed in Xenopus oocytes by the Ca2+ channel antagonist mibefradil (Ro 40-5967).
    Bezprozvanny I; Tsien RW
    Mol Pharmacol; 1995 Sep; 48(3):540-9. PubMed ID: 7565636
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of residual Ca2+ on the stochastic gating of Ca2+-regulated Ca2+ channel models.
    Mazzag B; Tignanelli CJ; Smith GD
    J Theor Biol; 2005 Jul; 235(1):121-50. PubMed ID: 15833318
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analytical steady-state solution to the rapid buffering approximation near an open Ca2+ channel.
    Smith GD
    Biophys J; 1996 Dec; 71(6):3064-72. PubMed ID: 8968577
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Variation of intracellular Ca2+ following Ca2+ current in heart. A theoretical study of ionic diffusion inside a cylindrical cell.
    Fischmeister R; Horackova M
    Biophys J; 1983 Mar; 41(3):341-8. PubMed ID: 6838972
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Permeation through the calcium release channel of cardiac muscle.
    Chen D; Xu L; Tripathy A; Meissner G; Eisenberg B
    Biophys J; 1997 Sep; 73(3):1337-54. PubMed ID: 9284302
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of t-tubules in the control of trans-sarcolemmal ion flux and intracellular Ca2+ in a model of the rat cardiac ventricular myocyte.
    Pásek M; Šimurda J; Orchard CH
    Eur Biophys J; 2012 Jun; 41(6):491-503. PubMed ID: 22466899
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein families that mediate Ca2+ signaling in the cardiovascular system.
    Katz AM
    Am J Cardiol; 1996 Nov; 78(9A):2-6. PubMed ID: 8903278
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wave propagation in cardiac tissue and effects of intracellular calcium dynamics (computer simulation study).
    Chudin E; Garfinkel A; Weiss J; Karplus W; Kogan B
    Prog Biophys Mol Biol; 1998; 69(2-3):225-36. PubMed ID: 9785940
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A model of the single atrial cell: relation between calcium current and calcium release.
    Earm YE; Noble D
    Proc R Soc Lond B Biol Sci; 1990 May; 240(1297):83-96. PubMed ID: 1972993
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The magnitude and significance of Ca2+ domains for release of neurotransmitter.
    Aharon S; Parnas H; Parnas I
    Bull Math Biol; 1994 Nov; 56(6):1095-119. PubMed ID: 7833845
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of Ca2+ in maintenance of rabbit myocardial cell membrane structural and functional integrity.
    Crevey BJ; Langer GA; Frank JS
    J Mol Cell Cardiol; 1978 Dec; 10(12):1081-100. PubMed ID: 745248
    [No Abstract]   [Full Text] [Related]  

  • 36. Fractal activity in cell membrane ion channels.
    Liebovitch LS; Tóth TI
    Ann N Y Acad Sci; 1990; 591():375-91. PubMed ID: 2197930
    [No Abstract]   [Full Text] [Related]  

  • 37. Correction to "Tailoring Reaction Selectivity by Modulating a Catalytic Diad on a Foldamer Scaffold".
    Andrews MK; Liu X; Gellman SH
    J Am Chem Soc; 2022 Aug; 144(34):15908. PubMed ID: 35973103
    [No Abstract]   [Full Text] [Related]  

  • 38. Biological noise is a key determinant of the reproducibility and adaptability of cardiac pacemaking and EC coupling.
    Guarina L; Moghbel AN; Pourhosseinzadeh MS; Cudmore RH; Sato D; Clancy CE; Santana LF
    J Gen Physiol; 2022 Sep; 154(9):. PubMed ID: 35482009
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Image-Driven Modeling of Nanoscopic Cardiac Function: Where Have We Come From, and Where Are We Going?
    Louch WE; Perdreau-Dahl H; Edwards AG
    Front Physiol; 2022; 13():834211. PubMed ID: 35356084
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In silico simulations reveal that RYR distribution affects the dynamics of calcium release in cardiac myocytes.
    Iaparov BI; Zahradnik I; Moskvin AS; Zahradníková A
    J Gen Physiol; 2021 Apr; 153(4):. PubMed ID: 33735373
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.