BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 9200133)

  • 1. Tau proteins bind to kinesin and modulate its activation by microtubules.
    Jancsik V; Filliol D; Rendon A
    Neurobiology (Bp); 1996; 4(4):417-29. PubMed ID: 9200133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tau proteins harboring neurodegeneration-linked mutations impair kinesin translocation in vitro.
    Yu D; LaPointe NE; Guzman E; Pessino V; Wilson L; Feinstein SC; Valentine MT
    J Alzheimers Dis; 2014; 39(2):301-14. PubMed ID: 24150109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competition between motor molecules (kinesin and cytoplasmic dynein) and fibrous microtubule-associated proteins in binding to microtubules.
    Hagiwara H; Yorifuji H; Sato-Yoshitake R; Hirokawa N
    J Biol Chem; 1994 Feb; 269(5):3581-9. PubMed ID: 8106402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tau directs intracellular trafficking by regulating the forces exerted by kinesin and dynein teams.
    Chaudhary AR; Berger F; Berger CL; Hendricks AG
    Traffic; 2018 Feb; 19(2):111-121. PubMed ID: 29077261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of brain mitochondria with microtubules reconstituted from brain tubulin and MAP2 or TAU.
    Jung D; Filliol D; Miehe M; Rendon A
    Cell Motil Cytoskeleton; 1993; 24(4):245-55. PubMed ID: 8097434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copurification of kinesin polypeptides with microtubule-stimulated Mg-ATPase activity and kinetic analysis of enzymatic properties.
    Wagner MC; Pfister KK; Bloom GS; Brady ST
    Cell Motil Cytoskeleton; 1989; 12(4):195-215. PubMed ID: 2524282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microtubule formation and kinesin-driven microtubule gliding in vitro in the presence of lipopolysaccharide.
    Böhm KJ; Russwurm S; Ghaleb N; Reinhart K; Unger E
    Cell Biol Int; 1999; 23(6):431-7. PubMed ID: 10623422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The axonal transport motor kinesin-2 navigates microtubule obstacles via protofilament switching.
    Hoeprich GJ; Mickolajczyk KJ; Nelson SR; Hancock WO; Berger CL
    Traffic; 2017 May; 18(5):304-314. PubMed ID: 28267259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The nucleotide-binding state of microtubules modulates kinesin processivity and the ability of Tau to inhibit kinesin-mediated transport.
    McVicker DP; Chrin LR; Berger CL
    J Biol Chem; 2011 Dec; 286(50):42873-80. PubMed ID: 22039058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinesin and tau bind to distinct sites on microtubules.
    Marya PK; Syed Z; Fraylich PE; Eagles PA
    J Cell Sci; 1994 Jan; 107 ( Pt 1)():339-44. PubMed ID: 7909814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential regulation of dynein and kinesin motor proteins by tau.
    Dixit R; Ross JL; Goldman YE; Holzbaur EL
    Science; 2008 Feb; 319(5866):1086-9. PubMed ID: 18202255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a new microtubule-interacting protein Mip-90.
    González M; Cambiazo V; Maccioni RB
    Eur J Cell Biol; 1995 Jun; 67(2):158-69. PubMed ID: 7664757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microtubule-associated protein-like binding of the kinesin-1 tail to microtubules.
    Seeger MA; Rice SE
    J Biol Chem; 2010 Mar; 285(11):8155-62. PubMed ID: 20071331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The identification, purification, and characterization of a pancreatic beta-cell form of the microtubule adenosine triphosphatase kinesin.
    Balczon R; Overstreet KA; Zinkowski RP; Haynes A; Appel M
    Endocrinology; 1992 Jul; 131(1):331-6. PubMed ID: 1612013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microtubule-associated proteins and microtubule-based translocators have different binding sites on tubulin molecule.
    Rodionov VI; Gyoeva FK; Kashina AS; Kuznetsov SA; Gelfand VI
    J Biol Chem; 1990 Apr; 265(10):5702-7. PubMed ID: 2138610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetylated Microtubules Are Preferentially Bundled Leading to Enhanced Kinesin-1 Motility.
    Balabanian L; Berger CL; Hendricks AG
    Biophys J; 2017 Oct; 113(7):1551-1560. PubMed ID: 28978447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chlorpyrifos, chlorpyrifos-oxon, and diisopropylfluorophosphate inhibit kinesin-dependent microtubule motility.
    Gearhart DA; Sickles DW; Buccafusco JJ; Prendergast MA; Terry AV
    Toxicol Appl Pharmacol; 2007 Jan; 218(1):20-9. PubMed ID: 17123561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rat pancreas kinesin: identification and potential binding to microtubules.
    Malekzadeh-Hemmat K; Gendry P; Launay JF
    Cell Mol Biol (Noisy-le-grand); 1993 May; 39(3):279-85. PubMed ID: 8334381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic model for kinesin-mediated long-range transport and its local traffic jam caused by tau proteins.
    Nam W; Epureanu BI
    Phys Rev E; 2017 Jan; 95(1-1):012405. PubMed ID: 28208320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstitution of physiological microtubule dynamics using purified components.
    Kinoshita K; Arnal I; Desai A; Drechsel DN; Hyman AA
    Science; 2001 Nov; 294(5545):1340-3. PubMed ID: 11701928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.