These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 9200213)

  • 21. Effect of BQ123 on vasoconstriction as a result of either hypoxia or endothelin-1 in perfused rat lungs.
    Takeoka M; Ishizaki T; Sakai A; Chang SW; Shigemori K; Higashi T; Ueda G
    Acta Physiol Scand; 1995 Sep; 155(1):53-60. PubMed ID: 8553877
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regression of ventricular and vascular hypertrophy: are there differences between structurally different angiotensin-converting enzyme inhibitors?
    Raasch W; Bartels T; Schwartz C; Häuser W; Rütten H; Dominiak P
    J Hypertens; 2002 Dec; 20(12):2495-504. PubMed ID: 12473875
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Potentiation of bradykinin effect by angiotensin-converting enzyme inhibition does not correlate with angiotensin-converting enzyme activity in the rat mesenteric arteries.
    Sivieri DO; Bispo-da-Silva LB; Oliveira EB; Resende AC; Salgado MC
    Hypertension; 2007 Jul; 50(1):110-5. PubMed ID: 17470724
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of angiotensin-converting enzyme inhibition on arterial, venous and capillary functions in cat skeletal muscle in vivo.
    Ekelund U
    Acta Physiol Scand; 1996 Sep; 158(1):29-37. PubMed ID: 8876745
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of applied tension and nitric oxide on responses to endothelins in rat pulmonary resistance arteries: effect of chronic hypoxia.
    MacLean MR; McCulloch KM
    Br J Pharmacol; 1998 Mar; 123(5):991-9. PubMed ID: 9535030
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preservation of kidney function with combined inhibition of NADPH oxidase and angiotensin-converting enzyme in diabetic nephropathy.
    Thallas-Bonke V; Coughlan MT; Bach LA; Cooper ME; Forbes JM
    Am J Nephrol; 2010; 32(1):73-82. PubMed ID: 20551625
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced reactivity to bradykinin, angiotensin I and the effect of captopril in the pulmonary vasculature of chronically hypoxic rats.
    Russell PC; Emery CJ; Cai YN; Barer GR; Howard P
    Eur Respir J; 1990 Jul; 3(7):779-85. PubMed ID: 2261965
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of aprotinin on the mean arterial pressure, carotid artery blood flow, and hindlimb vascular resistance in the live rat, and pulmonary vascular resistance in the isolated perfused rat lung.
    Jahr JS; Kaye AD; Kang B; Feng CJ; Nossaman BD
    J Med; 1995; 26(1-2):31-42. PubMed ID: 7561529
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of dietary salts on the cardiovascular effects of low-dose combination of ramipril and felodipine in spontaneously hypertensive rats.
    Mervaala EM; Malmberg L; Teräväinen TL; Laakso J; Vapaatalo H; Karppanen H
    Br J Pharmacol; 1998 Jan; 123(2):195-204. PubMed ID: 9489606
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Ramipril and cardiac and renal angiotensin converting enzyme].
    Grima M; Stephan D; Welsch C; Coquard C; Barthelmebs M; Imbs JL
    Arch Mal Coeur Vaiss; 1995 Feb; 88 Spec No 2():43-8. PubMed ID: 7646311
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Ramipril, a new antagonist of angiotensin converting enzyme].
    Korolkovas A; Brandão DC; Rosito F
    Arq Bras Cardiol; 1993 Feb; 60(2):115-22. PubMed ID: 8240047
    [No Abstract]   [Full Text] [Related]  

  • 32. Perindopril and ramipril phosphonate analogues as a new class of angiotensin converting enzyme inhibitors.
    Gomez C; Berteina-Raboin S; De Nanteuil G; Guillaumet G
    Bioorg Med Chem; 2013 Nov; 21(22):7216-21. PubMed ID: 24095015
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of age and dietary sodium on the cardiovascular and renal effects of ramipril in spontaneously hypertensive rats.
    Teräväinen TL; Mervaala EM; Pörsti I; Laakso J; Vapaatalo H; Karppanen H
    Methods Find Exp Clin Pharmacol; 1997 Jun; 19(5):311-21. PubMed ID: 9379779
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Constant flow- vs. constant pressure-perfusion for studies of pulmonary vasoactive responses.
    Bjertnaes L; Hauge A
    Acta Physiol Scand; 1980 Jun; 109(2):193-200. PubMed ID: 7424540
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanical properties and reactivity of vessels in isolated perfused lungs of chronically hypoxic rats.
    Emery CJ; Bee D; Barer GR
    Clin Sci (Lond); 1981 Nov; 61(5):569-80. PubMed ID: 7285503
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pulmonary vascular remodelling in hypoxic rats: effects of amlodipine, alone and with perindopril.
    Jeffery TK; Wanstall JC
    Eur J Pharmacol; 2001 Mar; 416(1-2):123-31. PubMed ID: 11282121
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [The role of angiotensin-converting enzyme inhibitor (captopril) on the mechanism of hypoxic pulmonary vasoconstriction. Experimental study in dogs].
    Soares GP; Romaldini H; dos Santos ML; Ratto OR
    Arq Bras Cardiol; 1989 Jun; 52(6):307-14. PubMed ID: 2557814
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Perinatal lung injury extends in adults the site of hypoxic pulmonary vasoconstriction upstream.
    Herget J; Kuklík V
    Physiol Res; 1995; 44(1):25-30. PubMed ID: 8789296
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of chronic hypoxia on angiotensin-induced pulmonary vasoconstriction and converting enzyme activity in the rat.
    Caldwell RW; Blatteis CM
    Proc Soc Exp Biol Med; 1983 Mar; 172(3):346-50. PubMed ID: 6302709
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modulation of converting enzyme activity by hypoxia and its physiological effects.
    Stalcup SA; Lipset JS; Mellins RB
    Ciba Found Symp; 1980; 78():293-311. PubMed ID: 6258882
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.