These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 9200704)
1. Function of conserved tryptophans in the Aspergillus niger glucoamylase 1 starch binding domain. Williamson MP; Le Gal-Coëffet MF; Sorimachi K; Furniss CS; Archer DB; Williamson G Biochemistry; 1997 Jun; 36(24):7535-9. PubMed ID: 9200704 [TBL] [Abstract][Full Text] [Related]
2. Thermodynamics of binding of heterobidentate ligands consisting of spacer-connected acarbose and beta-cyclodextrin to the catalytic and starch-binding domains of glucoamylase from Aspergillus niger shows that the catalytic and starch-binding sites are in close proximity in space. Sigurskjold BW; Christensen T; Payre N; Cottaz S; Driguez H; Svensson B Biochemistry; 1998 Jul; 37(29):10446-52. PubMed ID: 9671514 [TBL] [Abstract][Full Text] [Related]
3. Both binding sites of the starch-binding domain of Aspergillus niger glucoamylase are essential for inducing a conformational change in amylose. Giardina T; Gunning AP; Juge N; Faulds CB; Furniss CS; Svensson B; Morris VJ; Williamson G J Mol Biol; 2001 Nov; 313(5):1149-59. PubMed ID: 11700070 [TBL] [Abstract][Full Text] [Related]
4. Solution structure of the granular starch binding domain of glucoamylase from Aspergillus niger by nuclear magnetic resonance spectroscopy. Sorimachi K; Jacks AJ; Le Gal-Coëffet MF; Williamson G; Archer DB; Williamson MP J Mol Biol; 1996 Jun; 259(5):970-87. PubMed ID: 8683599 [TBL] [Abstract][Full Text] [Related]
5. Thermodynamics of reversible and irreversible unfolding and domain interactions of glucoamylase from Aspergillus niger studied by differential scanning and isothermal titration calorimetry. Christensen T; Svensson B; Sigurskjold BW Biochemistry; 1999 May; 38(19):6300-10. PubMed ID: 10320360 [TBL] [Abstract][Full Text] [Related]
6. Solution structure of the granular starch binding domain of Aspergillus niger glucoamylase bound to beta-cyclodextrin. Sorimachi K; Le Gal-Coëffet MF; Williamson G; Archer DB; Williamson MP Structure; 1997 May; 5(5):647-61. PubMed ID: 9195884 [TBL] [Abstract][Full Text] [Related]
7. Expression in Aspergillus niger of the starch-binding domain of glucoamylase. Comparison with the proteolytically produced starch-binding domain. Le Gal-Coëffet MF; Jacks AJ; Sorimachi K; Williamson MP; Williamson G; Archer DB Eur J Biochem; 1995 Oct; 233(2):561-7. PubMed ID: 7588802 [TBL] [Abstract][Full Text] [Related]
8. Interaction of beta-cyclodextrin with the granular starch binding domain of glucoamylase. Belshaw NJ; Williamson G Biochim Biophys Acta; 1991 May; 1078(1):117-20. PubMed ID: 2049377 [TBL] [Abstract][Full Text] [Related]
9. Thermodynamics of ligand binding to the starch-binding domain of glucoamylase from Aspergillus niger. Sigurskjold BW; Svensson B; Williamson G; Driguez H Eur J Biochem; 1994 Oct; 225(1):133-41. PubMed ID: 7925430 [TBL] [Abstract][Full Text] [Related]
10. Glucoamylase starch-binding domain of Aspergillus niger B1: molecular cloning and functional characterization. Paldi T; Levy I; Shoseyov O Biochem J; 2003 Jun; 372(Pt 3):905-10. PubMed ID: 12646045 [TBL] [Abstract][Full Text] [Related]
11. Molecular dynamics simulations of the unfolding of the starch binding domain from Aspergillus niger glucoamylase. Liu HL; Wang WC J Biomol Struct Dyn; 2003 Apr; 20(5):615-22. PubMed ID: 12643764 [TBL] [Abstract][Full Text] [Related]
12. Crystal structures of the starch-binding domain from Rhizopus oryzae glucoamylase reveal a polysaccharide-binding path. Tung JY; Chang MD; Chou WI; Liu YY; Yeh YH; Chang FY; Lin SC; Qiu ZL; Sun YJ Biochem J; 2008 Nov; 416(1):27-36. PubMed ID: 18588504 [TBL] [Abstract][Full Text] [Related]
13. The family 21 carbohydrate-binding module of glucoamylase from Rhizopus oryzae consists of two sites playing distinct roles in ligand binding. Chou WI; Pai TW; Liu SH; Hsiung BK; Chang MD Biochem J; 2006 Jun; 396(3):469-77. PubMed ID: 16509822 [TBL] [Abstract][Full Text] [Related]
14. Thermodynamic effects of disulfide bond on thermal unfolding of the starch-binding domain of Aspergillus niger glucoamylase. Sugimoto H; Nakaura M; Kosuge Y; Imai K; Miyake H; Karita S; Tanaka A Biosci Biotechnol Biochem; 2007 Jun; 71(6):1535-41. PubMed ID: 17587686 [TBL] [Abstract][Full Text] [Related]
15. Steady-state kinetic and calorimetric studies on the binding of Aspergillus niger glucoamylase with gluconolactone, 1-deoxynojirimycin, and beta-cyclodextrin. Tanaka A Biosci Biotechnol Biochem; 1996 Dec; 60(12):2055-8. PubMed ID: 8988638 [TBL] [Abstract][Full Text] [Related]
16. 1H and 15N assignments and secondary structure of the starch-binding domain of glucoamylase from Aspergillus niger. Jacks AJ; Sorimachi K; Le Gal-Coëffet MF; Williamson G; Archer DB; Williamson MP Eur J Biochem; 1995 Oct; 233(2):568-78. PubMed ID: 7588803 [TBL] [Abstract][Full Text] [Related]
17. Functional and structural roles of the highly conserved Trp120 loop region of glucoamylase from Aspergillus awamori. Natarajan S; Sierks MR Biochemistry; 1996 Mar; 35(9):3050-8. PubMed ID: 8608145 [TBL] [Abstract][Full Text] [Related]
18. A CBM20 low-affinity starch-binding domain from glucan, water dikinase. Christiansen C; Hachem MA; Glaring MA; Viksø-Nielsen A; Sigurskjold BW; Svensson B; Blennow A FEBS Lett; 2009 Apr; 583(7):1159-63. PubMed ID: 19275898 [TBL] [Abstract][Full Text] [Related]
19. Starch-binding domain of Aspergillus glucoamylase-I. Interaction with beta-cyclodextrin and maltoheptaose. Kusnadi AR; Chang HY; Nikolov ZL; Metzler DE; Metzler CM Ann N Y Acad Sci; 1994 May; 721():168-77. PubMed ID: 8010668 [TBL] [Abstract][Full Text] [Related]
20. Substrate binding mechanism of Glu180-->Gln, Asp176-->Asn, and wild-type glucoamylases from Aspergillus niger. Christensen U; Olsen K; Stoffer BB; Svensson B Biochemistry; 1996 Nov; 35(47):15009-18. PubMed ID: 8942667 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]