These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 9200740)

  • 1. Basal forebrain and cerebral cortical muscarinic receptors mediate increase in cortical blood flow provoked by periaqueductal gray matter.
    Nakai M; Ogata J; Fukui K; Nakai Y; Maeda M
    Neuroscience; 1997 Jul; 79(2):571-9. PubMed ID: 9200740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cerebral cortical muscarinic cholinergic and N-methyl-D-aspartate receptors mediate increase in cortical blood flow elicited by chemical stimulation of periaqueductal gray matter.
    Nakai M; Maeda M
    Neuroscience; 2000; 98(3):449-57. PubMed ID: 10869839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vasodilatation and enhanced oxidative metabolism of the cerebral cortex provoked by the periaqueductal gray matter in anaesthetized rats.
    Nakai M; Maeda M
    Neuroscience; 1996 Jun; 72(4):1133-40. PubMed ID: 8735235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scopolamine-sensitive and resistant components of increase in cerebral cortical blood flow elicited by periaqueductal gray matter of rats.
    Nakai M; Maeda M
    Neurosci Lett; 1999 Aug; 270(3):173-6. PubMed ID: 10462122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrergic cerebral vasodilatation provoked by the periaqueductal grey.
    Nakai M; Maeda M
    Neuroreport; 1996 Nov; 7(15-17):2571-4. PubMed ID: 8981425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebrovasodilatation of metabolic and non-metabolic origin elicited by chemical stimulation of the lateral periaqueductal gray matter in anaesthetized rats.
    Nakai M; Maeda M
    Neuroscience; 1994 Feb; 58(4):785-91. PubMed ID: 8190255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excitatory amino acid receptors in the periaqueductal gray mediate the cardiovascular response evoked by activation of dorsomedial hypothalamic neurons.
    da Silva LG; Menezes RC; Villela DC; Fontes MA
    Neuroscience; 2006; 139(3):1129-39. PubMed ID: 16458440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential effects of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid and N-methyl-D-aspartate receptor antagonists applied to the basal forebrain on cortical acetylcholine release and electroencephalogram desynchronization.
    Rasmusson DD; Szerb IC; Jordan JL
    Neuroscience; 1996 May; 72(2):419-27. PubMed ID: 8737412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systemic and regional haemodynamic responses elicited by microinjection of N-methyl-D-aspartate into the lateral periaqueductal gray matter in anaesthetized rats.
    Nakai M; Maeda M
    Neuroscience; 1994 Feb; 58(4):777-83. PubMed ID: 8190254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Actions of NMDA and cholinergic receptor antagonists in the rostral ventromedial medulla upon beta-endorphin analgesia elicited from the ventrolateral periaqueductal gray.
    Spinella M; Znamensky V; Moroz M; Ragnauth A; Bodnar RJ
    Brain Res; 1999 May; 829(1-2):151-9. PubMed ID: 10350541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of age on cholinergic vasodilation of cortical cerebral blood vessels in rats.
    Uchida S; Suzuki A; Kagitani F; Hotta H
    Neurosci Lett; 2000 Nov; 294(2):109-12. PubMed ID: 11058799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of cerebral cortical blood flow by stimulation of basal forebrain cholinergic areas in mice.
    Hotta H; Uchida S; Kagitani F; Maruyama N
    J Physiol Sci; 2011 May; 61(3):201-9. PubMed ID: 21424590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excitotoxic lesions of rat basal forebrain: differential effects on choline acetyltransferase in the cortex and amygdala.
    Boegman RJ; Cockhill J; Jhamandas K; Beninger RJ
    Neuroscience; 1992 Nov; 51(1):129-35. PubMed ID: 1281523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fos activation in hypothalamic neurons during cold or warm exposure: projections to periaqueductal gray matter.
    Yoshida K; Konishi M; Nagashima K; Saper CB; Kanosue K
    Neuroscience; 2005; 133(4):1039-46. PubMed ID: 15927405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential effects of 192IgG-saporin and NMDA-induced lesions into the basal forebrain on cholinergic activity and taste aversion memory formation.
    Gutiérrez H; Gutiérrez R; Silva-Gandarias R; Estrada J; Miranda MI; Bermúdez-Rattoni F
    Brain Res; 1999 Jul; 834(1-2):136-41. PubMed ID: 10407102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissociable effects on spatial maze and passive avoidance acquisition and retention following AMPA- and ibotenic acid-induced excitotoxic lesions of the basal forebrain in rats: differential dependence on cholinergic neuronal loss.
    Page KJ; Everitt BJ; Robbins TW; Marston HM; Wilkinson LS
    Neuroscience; 1991; 43(2-3):457-72. PubMed ID: 1922778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural segregation of Fos-protein distribution in the brain following freezing and escape behaviors induced by injections of either glutamate or NMDA into the dorsal periaqueductal gray of rats.
    Ferreira-Netto C; Borelli KG; Brandão ML
    Brain Res; 2005 Jan; 1031(2):151-63. PubMed ID: 15649440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitory and excitatory projections from the dorsal raphe nucleus to neurons in the dorsolateral periaqueductal gray matter in slices of midbrain maintained in vitro.
    Stezhka VV; Lovick TA
    Neuroscience; 1994 Sep; 62(1):177-87. PubMed ID: 7816199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct projections from the midbrain periaqueductal gray and the dorsal raphe nucleus to the trigeminal sensory complex in the rat.
    Li YQ; Takada M; Shinonaga Y; Mizuno N
    Neuroscience; 1993 May; 54(2):431-43. PubMed ID: 7687754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuroanatomical and neuropharmacological study of opioid pathways in the mesencephalic tectum: effect of mu(1)- and kappa-opioid receptor blockade on escape behavior induced by electrical stimulation of the inferior colliculus.
    Osaki MY; Castellan-Baldan L; Calvo F; Carvalho AD; Felippotti TT; de Oliveira R; Ubiali WA; Paschoalin-Maurin T; Elias-Filho DH; Motta V; da Silva LA; Coimbra NC
    Brain Res; 2003 Dec; 992(2):179-92. PubMed ID: 14625057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.