These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 9201919)
1. Characterization of two important histidine residues in the active site of xylanase A from Streptomyces lividans, a family 10 glycanase. Roberge M; Shareck F; Morosoli R; Kluepfel D; Dupont C Biochemistry; 1997 Jun; 36(25):7769-75. PubMed ID: 9201919 [TBL] [Abstract][Full Text] [Related]
2. Site-directed mutagenesis study of a conserved residue in family 10 glycanases: histidine 86 of xylanase A from Streptomyces lividans. Roberge M; Shareck F; Morosoli R; Kluepfel D; Dupont C Protein Eng; 1998 May; 11(5):399-404. PubMed ID: 9681873 [TBL] [Abstract][Full Text] [Related]
3. Increased xylanase yield in Streptomyces lividans: dependence on number of ribosome-binding sites. Pagé N; Kluepfel D; Shareck F; Morosoli R Nat Biotechnol; 1996 Jun; 14(6):756-9. PubMed ID: 9630985 [TBL] [Abstract][Full Text] [Related]
4. Characterization of active-site aromatic residues in xylanase A from Streptomyces lividans. Roberge M; Shareck F; Morosoli R; Kluepfel D; Dupont C Protein Eng; 1999 Mar; 12(3):251-7. PubMed ID: 10235626 [TBL] [Abstract][Full Text] [Related]
5. Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase. Joshi MD; Sidhu G; Pot I; Brayer GD; Withers SG; McIntosh LP J Mol Biol; 2000 May; 299(1):255-79. PubMed ID: 10860737 [TBL] [Abstract][Full Text] [Related]
6. Asparagine-127 of xylanase A from Streptomyces lividans, a key residue in glycosyl hydrolases of superfamily 4/7: kinetic evidence for its involvement in stabilization of the catalytic intermediate. Roberge M; Dupont C; Morosoli R; Shareck F; Kluepfel D Protein Eng; 1997 Apr; 10(4):399-403. PubMed ID: 9194164 [TBL] [Abstract][Full Text] [Related]
8. Study of the active site residues of a glycoside hydrolase family 8 xylanase. Collins T; De Vos D; Hoyoux A; Savvides SN; Gerday C; Van Beeumen J; Feller G J Mol Biol; 2005 Nov; 354(2):425-35. PubMed ID: 16246370 [TBL] [Abstract][Full Text] [Related]
9. Single mutations of residues outside the active center of the xylanase Xys1 Delta from Streptomyces halstedii JM8 affect its activity. Díaz M; Rodriguez S; Fernández-Abalos JM; De Las Rivas J; Ruiz-Arribas A; Shnyrov VL; Santamaría RI FEMS Microbiol Lett; 2004 Nov; 240(2):237-43. PubMed ID: 15522513 [TBL] [Abstract][Full Text] [Related]
10. Probing electrostatic interactions along the reaction pathway of a glycoside hydrolase: histidine characterization by NMR spectroscopy. Schubert M; Poon DK; Wicki J; Tarling CA; Kwan EM; Nielsen JE; Withers SG; McIntosh LP Biochemistry; 2007 Jun; 46(25):7383-95. PubMed ID: 17547373 [TBL] [Abstract][Full Text] [Related]
11. Mechanistic consequences of mutation of active site carboxylates in a retaining beta-1,4-glycanase from Cellulomonas fimi. MacLeod AM; Tull D; Rupitz K; Warren RA; Withers SG Biochemistry; 1996 Oct; 35(40):13165-72. PubMed ID: 8855954 [TBL] [Abstract][Full Text] [Related]
12. Dissecting the electrostatic interactions and pH-dependent activity of a family 11 glycosidase. Joshi MD; Sidhu G; Nielsen JE; Brayer GD; Withers SG; McIntosh LP Biochemistry; 2001 Aug; 40(34):10115-39. PubMed ID: 11513590 [TBL] [Abstract][Full Text] [Related]
13. Crystal structure at 1.8 A resolution and proposed amino acid sequence of a thermostable xylanase from Thermoascus aurantiacus. Natesh R; Bhanumoorthy P; Vithayathil PJ; Sekar K; Ramakumar S; Viswamitra MA J Mol Biol; 1999 May; 288(5):999-1012. PubMed ID: 10329194 [TBL] [Abstract][Full Text] [Related]
14. Differential scanning calorimetric, circular dichroism, and Fourier transform infrared spectroscopic characterization of the thermal unfolding of xylanase A from Streptomyces lividans. Roberge M; Lewis RN; Shareck F; Morosoli R; Kluepfel D; Dupont C; McElhaney RN Proteins; 2003 Feb; 50(2):341-54. PubMed ID: 12486727 [TBL] [Abstract][Full Text] [Related]
15. Role of active-site residues of dispersin B, a biofilm-releasing beta-hexosaminidase from a periodontal pathogen, in substrate hydrolysis. Manuel SG; Ragunath C; Sait HB; Izano EA; Kaplan JB; Ramasubbu N FEBS J; 2007 Nov; 274(22):5987-99. PubMed ID: 17949435 [TBL] [Abstract][Full Text] [Related]
16. On the catalytic role of the conserved active site residue His466 of choline oxidase. Ghanem M; Gadda G Biochemistry; 2005 Jan; 44(3):893-904. PubMed ID: 15654745 [TBL] [Abstract][Full Text] [Related]
17. The roles of active-site residues in the catalytic mechanism of trans-3-chloroacrylic acid dehalogenase: a kinetic, NMR, and mutational analysis. Azurmendi HF; Wang SC; Massiah MA; Poelarends GJ; Whitman CP; Mildvan AS Biochemistry; 2004 Apr; 43(14):4082-91. PubMed ID: 15065850 [TBL] [Abstract][Full Text] [Related]
18. Mutational analysis of Thermus caldophilus GK24 beta-glycosidase: role of His119 in substrate binding and enzyme activity. Oh EJ; Lee YJ; Chol JJ; Seo MS; Lee MS; Kim GA; Kwon ST J Microbiol Biotechnol; 2008 Feb; 18(2):287-94. PubMed ID: 18309273 [TBL] [Abstract][Full Text] [Related]
19. Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant. Kratzer R; Kavanagh KL; Wilson DK; Nidetzky B Biochemistry; 2004 May; 43(17):4944-54. PubMed ID: 15109252 [TBL] [Abstract][Full Text] [Related]
20. Insights into transition state stabilization of the beta-1,4-glycosidase Cex by covalent intermediate accumulation in active site mutants. Notenboom V; Birsan C; Nitz M; Rose DR; Warren RA; Withers SG Nat Struct Biol; 1998 Sep; 5(9):812-8. PubMed ID: 9731776 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]