BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 9201929)

  • 1. Carotenoid-dependent oligomerization of the major chlorophyll a/b light harvesting complex of photosystem II of plants.
    Ruban AV; Phillip D; Young AJ; Horton P
    Biochemistry; 1997 Jun; 36(25):7855-9. PubMed ID: 9201929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic properties of the minor chlorophyll a/b binding proteins of photosystem II, an in vitro model for photoprotective energy dissipation in the photosynthetic membrane of green plants.
    Ruban AV; Young AJ; Horton P
    Biochemistry; 1996 Jan; 35(3):674-8. PubMed ID: 8547246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carotenoid cation formation and the regulation of photosynthetic light harvesting.
    Holt NE; Zigmantas D; Valkunas L; Li XP; Niyogi KK; Fleming GR
    Science; 2005 Jan; 307(5708):433-6. PubMed ID: 15662017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional architecture of the major light-harvesting complex from higher plants.
    Formaggio E; Cinque G; Bassi R
    J Mol Biol; 2001 Dec; 314(5):1157-66. PubMed ID: 11743731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The origins of nonphotochemical quenching of chlorophyll fluorescence in photosynthesis. Direct quenching by P680+ in photosystem II enriched membranes at low pH.
    Bruce D; Samson G; Carpenter C
    Biochemistry; 1997 Jan; 36(4):749-55. PubMed ID: 9020772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carotenoid binding sites in LHCIIb. Relative affinities towards major xanthophylls of higher plants.
    Hobe S; Niemeier H; Bender A; Paulsen H
    Eur J Biochem; 2000 Jan; 267(2):616-24. PubMed ID: 10632733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photosynthesis, chlorophyll fluorescence, light-harvesting system and photoinhibition resistance of a zeaxanthin-accumulating mutant of Arabidopsis thaliana.
    Tardy F; Havaux M
    J Photochem Photobiol B; 1996 Jun; 34(1):87-94. PubMed ID: 8765663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Femtosecond transient absorption study of carotenoid to chlorophyll energy transfer in the light-harvesting complex II of photosystem II.
    Connelly JP; Müller MG; Bassi R; Croce R; Holzwarth AR
    Biochemistry; 1997 Jan; 36(2):281-7. PubMed ID: 9003179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of 13-cis violaxanthin on organization of light harvesting complex II in monomolecular layers.
    Grudziński W; Matuła M; Sielewiesiuk J; Kernen P; Krupa Z; Gruszecki WI
    Biochim Biophys Acta; 2001 Jan; 1503(3):291-302. PubMed ID: 11115641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy transfer reactions involving carotenoids: quenching of chlorophyll fluorescence.
    Young AJ; Frank HA
    J Photochem Photobiol B; 1996 Oct; 36(1):3-15. PubMed ID: 8988608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular design of the photosystem II light-harvesting antenna: photosynthesis and photoprotection.
    Horton P; Ruban A
    J Exp Bot; 2005 Jan; 56(411):365-73. PubMed ID: 15557295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Configuration and dynamics of xanthophylls in light-harvesting antennae of higher plants. Spectroscopic analysis of isolated light-harvesting complex of photosystem II and thylakoid membranes.
    Ruban AV; Pascal AA; Robert B; Horton P
    J Biol Chem; 2001 Jul; 276(27):24862-70. PubMed ID: 11331293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chlorophyll fluorescence quenching in isolated light harvesting complexes induced by zeaxanthin.
    Wentworth M; Ruban AV; Horton P
    FEBS Lett; 2000 Apr; 471(1):71-4. PubMed ID: 10760515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the pigment stoichiometry of pigment-protein complexes from barley (Hordeum vulgare). The xanthophyll cycle intermediates occur mainly in the light-harvesting complexes of photosystem I and photosystem II.
    Lee AI; Thornber JP
    Plant Physiol; 1995 Feb; 107(2):565-74. PubMed ID: 7724673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of the excitation energy utilization in the photosynthetic apparatus of chlorina f2 barley mutant grown under different irradiances.
    Stroch M; Cajánek M; Kalina J; Spunda V
    J Photochem Photobiol B; 2004 Jul; 75(1-2):41-50. PubMed ID: 15246349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal dissipation of light energy is regulated differently and by different mechanisms in lichens and higher plants.
    Kopecky J; Azarkovich M; Pfündel EE; Shuvalov VA; Heber U
    Plant Biol (Stuttg); 2005 Mar; 7(2):156-67. PubMed ID: 15822011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A few molecules of zeaxanthin per reaction centre of photosystem II permit effective thermal dissipation of light energy in photosystem II of a poikilohydric moss.
    Bukhov NG; Kopecky J; Pfündel EE; Klughammer C; Heber U
    Planta; 2001 Apr; 212(5-6):739-48. PubMed ID: 11346947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epoxidation of zeaxanthin and antheraxanthin reverses non-photochemical quenching of photosystem II chlorophyll a fluorescence in the presence of trans-thylakoid delta pH.
    Gilmore AM; Mohanty N; Yamamoto HY
    FEBS Lett; 1994 Aug; 350(2-3):271-4. PubMed ID: 8070578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simple replacement of violaxanthin by zeaxanthin in LHC-II does not cause chlorophyll fluorescence quenching.
    Dreuw A; Wormit M
    J Inorg Biochem; 2008 Mar; 102(3):458-65. PubMed ID: 18177943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photochemical behavior of xanthophylls in the recombinant photosystem II antenna complex, CP26.
    Frank HA; Das SK; Bautista JA; Bruce D; Vasil'ev S; Crimi M; Croce R; Bassi R
    Biochemistry; 2001 Feb; 40(5):1220-5. PubMed ID: 11170447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.