These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 9201938)
1. Examination of the transition state of the low-molecular mass small tyrosine phosphatase 1. Comparisons with other protein phosphatases. Hengge AC; Zhao Y; Wu L; Zhang ZY Biochemistry; 1997 Jun; 36(25):7928-36. PubMed ID: 9201938 [TBL] [Abstract][Full Text] [Related]
2. Transition-state structures for the native dual-specific phosphatase VHR and D92N and S131A mutants. Contributions to the driving force for catalysis. Hengge AC; Denu JM; Dixon JE Biochemistry; 1996 Jun; 35(22):7084-92. PubMed ID: 8679534 [TBL] [Abstract][Full Text] [Related]
3. Nature of the transition state of the protein-tyrosine phosphatase-catalyzed reaction. Hengge AC; Sowa GA; Wu L; Zhang ZY Biochemistry; 1995 Oct; 34(43):13982-7. PubMed ID: 7577995 [TBL] [Abstract][Full Text] [Related]
4. Mechanistic studies of protein tyrosine phosphatases YopH and Cdc25A with m-nitrobenzyl phosphate. McCain DF; Grzyska PK; Wu L; Hengge AC; Zhang ZY Biochemistry; 2004 Jun; 43(25):8256-64. PubMed ID: 15209522 [TBL] [Abstract][Full Text] [Related]
5. Probing the function of Asp128 in the lower molecular weight protein-tyrosine phosphatase-catalyzed reaction. A pre-steady-state and steady-state kinetic investigation. Wu L; Zhang ZY Biochemistry; 1996 Apr; 35(17):5426-34. PubMed ID: 8611532 [TBL] [Abstract][Full Text] [Related]
6. Isotope effect studies on the calcineurin phosphoryl-transfer reaction: transition state structure and effect of calmodulin and Mn2+. Hengge AC; Martin BL Biochemistry; 1997 Aug; 36(33):10185-91. PubMed ID: 9254616 [TBL] [Abstract][Full Text] [Related]
7. Transition state analysis and requirement of Asp-262 general acid/base catalyst for full activation of dual-specificity phosphatase MKP3 by extracellular regulated kinase. Rigas JD; Hoff RH; Rice AE; Hengge AC; Denu JM Biochemistry; 2001 Apr; 40(14):4398-406. PubMed ID: 11284696 [TBL] [Abstract][Full Text] [Related]
8. Comparison of the reaction progress of calcineurin with Mn2+ and Mg2+. Martin BL; Jurado LA; Hengge AC Biochemistry; 1999 Mar; 38(11):3386-92. PubMed ID: 10079083 [TBL] [Abstract][Full Text] [Related]
9. Effects on general acid catalysis from mutations of the invariant tryptophan and arginine residues in the protein tyrosine phosphatase from Yersinia. Hoff RH; Hengge AC; Wu L; Keng YF; Zhang ZY Biochemistry; 2000 Jan; 39(1):46-54. PubMed ID: 10625478 [TBL] [Abstract][Full Text] [Related]
10. Isotope effects and medium effects on sulfuryl transfer reactions. Hoff RH; Larsen P; Hengge AC J Am Chem Soc; 2001 Sep; 123(38):9338-44. PubMed ID: 11562216 [TBL] [Abstract][Full Text] [Related]
11. Probing the transition-state structure of dual-specificity protein phosphatases using a physiological substrate mimic. Grzyska PK; Kim Y; Jackson MD; Hengge AC; Denu JM Biochemistry; 2004 Jul; 43(27):8807-14. PubMed ID: 15236589 [TBL] [Abstract][Full Text] [Related]
12. Comparisons of phosphorothioate with phosphate transfer reactions for a monoester, diester, and triester: isotope effect studies. Catrina IE; Hengge AC J Am Chem Soc; 2003 Jun; 125(25):7546-52. PubMed ID: 12812494 [TBL] [Abstract][Full Text] [Related]
13. Transition state of the sulfuryl transfer reaction of estrogen sulfotransferase. Hoff RH; Czyryca PG; Sun M; Leyh TS; Hengge AC J Biol Chem; 2006 Oct; 281(41):30645-9. PubMed ID: 16899461 [TBL] [Abstract][Full Text] [Related]
14. Site-directed mutagenesis, kinetic, and spectroscopic studies of the P-loop residues in a low molecular weight protein tyrosine phosphatase. Evans B; Tishmack PA; Pokalsky C; Zhang M; Van Etten RL Biochemistry; 1996 Oct; 35(42):13609-17. PubMed ID: 8885840 [TBL] [Abstract][Full Text] [Related]
15. Probing the origin of the compromised catalysis of E. coli alkaline phosphatase in its promiscuous sulfatase reaction. Catrina I; O'Brien PJ; Purcell J; Nikolic-Hughes I; Zalatan JG; Hengge AC; Herschlag D J Am Chem Soc; 2007 May; 129(17):5760-5. PubMed ID: 17411045 [TBL] [Abstract][Full Text] [Related]
16. Secondary 18O isotope effects as a tool for studying reactions of phosphate mono-, di-, and triesters. Cleland WW FASEB J; 1990 Aug; 4(11):2899-905. PubMed ID: 2199287 [TBL] [Abstract][Full Text] [Related]
17. Kinetic and spectroscopic studies of Tritrichomonas foetus low-molecular weight phosphotyrosyl phosphatase. Hydrogen bond networks and electrostatic effects. Thomas CL; McKinnon E; Granger BL; Harms E; Van Etten RL Biochemistry; 2002 Dec; 41(52):15601-9. PubMed ID: 12501188 [TBL] [Abstract][Full Text] [Related]
18. Visualization of intermediate and transition-state structures in protein-tyrosine phosphatase catalysis. Denu JM; Lohse DL; Vijayalakshmi J; Saper MA; Dixon JE Proc Natl Acad Sci U S A; 1996 Mar; 93(6):2493-8. PubMed ID: 8637902 [TBL] [Abstract][Full Text] [Related]
19. Impaired transition state complementarity in the hydrolysis of O-arylphosphorothioates by protein-tyrosine phosphatases. Zhang YL; Hollfelder F; Gordon SJ; Chen L; Keng YF; Wu L; Herschlag D; Zhang ZY Biochemistry; 1999 Sep; 38(37):12111-23. PubMed ID: 10508416 [TBL] [Abstract][Full Text] [Related]
20. Reactivity of alcohols toward the phosphoenzyme intermediate in the protein-tyrosine phosphatase-catalyzed reaction: probing the transition state of the dephosphorylation step. Zhao Y; Zhang ZY Biochemistry; 1996 Sep; 35(36):11797-804. PubMed ID: 8794761 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]