These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 9201951)

  • 1. Partial activation of muscle phosphorylase by replacement of serine 14 with acidic residues at the site of regulatory phosphorylation.
    Buchbinder JL; Luong CB; Browner MF; Fletterick RJ
    Biochemistry; 1997 Jul; 36(26):8039-44. PubMed ID: 9201951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystallographic binding studies on the allosteric inhibitor glucose-6-phosphate to T state glycogen phosphorylase b.
    Johnson LN; Snape P; Martin JL; Acharya KR; Barford D; Oikonomakos NG
    J Mol Biol; 1993 Jul; 232(1):253-67. PubMed ID: 8331662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the active site gate of glycogen phosphorylase in allosteric inhibition and substrate binding.
    Buchbinder JL; Fletterick RJ
    J Biol Chem; 1996 Sep; 271(37):22305-9. PubMed ID: 8798388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Allosteric inhibition of glycogen phosphorylase a by the potential antidiabetic drug 3-isopropyl 4-(2-chlorophenyl)-1,4-dihydro-1-ethyl-2-methyl-pyridine-3,5,6-tricarbo xylate.
    Oikonomakos NG; Tsitsanou KE; Zographos SE; Skamnaki VT; Goldmann S; Bischoff H
    Protein Sci; 1999 Oct; 8(10):1930-45. PubMed ID: 10548038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of allosteric control in glycogen phosphorylase.
    Hudson JW; Golding GB; Crerar MM
    J Mol Biol; 1993 Dec; 234(3):700-21. PubMed ID: 8254668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural mechanism for glycogen phosphorylase control by phosphorylation and AMP.
    Barford D; Hu SH; Johnson LN
    J Mol Biol; 1991 Mar; 218(1):233-60. PubMed ID: 1900534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of a catalytic zinc binding site in Escherichia coli L-threonine dehydrogenase by site-directed mutagenesis of cysteine-38.
    Johnson AR; Chen YW; Dekker EE
    Arch Biochem Biophys; 1998 Oct; 358(2):211-21. PubMed ID: 9784233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Glycogen phosphorylase of skeletal muscles].
    Vul'fson PL
    Biokhimiia; 1986 Dec; 51(12):1974-92. PubMed ID: 3542060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrostatic activation of rat phenylalanine hydroxylase.
    Citron BA; Davis MD; Kaufman S
    Biochem Biophys Res Commun; 1994 Jan; 198(1):174-80. PubMed ID: 7904815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The allosteric transition of glycogen phosphorylase.
    Barford D; Johnson LN
    Nature; 1989 Aug; 340(6235):609-16. PubMed ID: 2770867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The binding of 2-deoxy-D-glucose 6-phosphate to glycogen phosphorylase b: kinetic and crystallographic studies.
    Oikonomakos NG; Zographos SE; Johnson LN; Papageorgiou AC; Acharya KR
    J Mol Biol; 1995 Dec; 254(5):900-17. PubMed ID: 7500360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asp-89: a critical residue in maintaining the oligomeric structure of sheep liver cytosolic serine hydroxymethyltransferase.
    Krishna Rao JV; Jagath JR; Sharma B; Appaji Rao N; Savithri HS
    Biochem J; 1999 Oct; 343 Pt 1(Pt 1):257-63. PubMed ID: 10493937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrates with charged P1 residues are efficiently hydrolyzed by serine carboxypeptidases when S3-P1 interactions are facilitated.
    Olesen K; Breddam K
    Biochemistry; 1997 Oct; 36(40):12235-41. PubMed ID: 9315861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The amino-terminal tail of glycogen phosphorylase is a switch for controlling phosphorylase conformation, activation, and response to ligands.
    Biorn AC; Graves DJ
    Biochemistry; 2001 May; 40(17):5181-9. PubMed ID: 11318640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-directed mutants of charged residues in the active site of tyrosine hydroxylase.
    Daubner SC; Fitzpatrick PF
    Biochemistry; 1999 Apr; 38(14):4448-54. PubMed ID: 10194366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing pH-dependent functional elements in proteins: modification of carboxylic acid pairs in Trichoderma reesei cellobiohydrolase Cel6A.
    Wohlfahrt G; Pellikka T; Boer H; Teeri TT; Koivula A
    Biochemistry; 2003 Sep; 42(34):10095-103. PubMed ID: 12939137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Convergent and divergent evolution of regulatory sites in eukaryotic phosphorylases.
    Hwang PK; Fletterick RJ
    Nature; 1986 Nov 6-12; 324(6092):80-4. PubMed ID: 3537803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of human liver glycogen phosphorylase by alteration of the secondary structure and packing of the catalytic core.
    Rath VL; Ammirati M; LeMotte PK; Fennell KF; Mansour MN; Danley DE; Hynes TR; Schulte GK; Wasilko DJ; Pandit J
    Mol Cell; 2000 Jul; 6(1):139-48. PubMed ID: 10949035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydration change during the aging of phosphorylated human butyrylcholinesterase: importance of residues aspartate-70 and glutamate-197 in the water network as probed by hydrostatic and osmotic pressures.
    Masson P; Cléry C; Guerra P; Redslob A; Albaret C; Fortier PL
    Biochem J; 1999 Oct; 343 Pt 2(Pt 2):361-9. PubMed ID: 10510301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual roles of Lys(57) at the dimer interface of human mitochondrial NAD(P)+-dependent malic enzyme.
    Hsieh JY; Liu JH; Fang YW; Hung HC
    Biochem J; 2009 May; 420(2):201-9. PubMed ID: 19236308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.